

CIVIL ENGINEERING - SURVEYING - LANDSCAPE ARCHITECTURE

STORMWATER MANAGEMENT REPORT

For

Franklin Drive Subdivision Multi-Family Development & Commercial Development Windham, Maine

Prepared for:

Land of New Gen Estates, LLC 50 Maine Mall Road South Portland, ME 04106

Prepared by:

Sebago Technics, Inc. 75 John Roberts Rd, Suite 4A South Portland, ME 04106

June 2025

<u>Contents</u>

1.	Introduction	. 3
2.	Existing Conditions	. 3
3.	Soils	. 4
4.	Proposed Site Improvements	. 4
5.	Existing Conditions Model	. 4
6.	Proposed Conditions Model	. 5
7.	Stormwater Management	. 6
E	asic Standard - Chapter 500, Section 4(B)	. 6
(Seneral Standard - Chapter 500, Section 4(C)	. 6
F	hosphorus Standard - Chapter 500, Section 4(D)	. 7
F	looding Standard - Chapter 500, Section 4(F)	. 8
ŀ	lydroCAD Stormwater Analysis	. 8
8.	Summary	. 9

Appendices

Appendix 1:	Stormwater Quality Calculations & Phosphorus Calculations
Appendix 2A:	Hydrologic Modeling– Existing Conditions (HydroCAD)Summary
Appendix 2B:	Hydrologic Modeling – Proposed Conditions (HydroCAD) Summary
Appendix 3:	Inspection, Maintenance, and Housekeeping Plan
Appendix 4:	Subsurface Investigations
Appendix 5:	Stormwater Management Plans
Appendix 6:	S.W. Cole Report on Site Infiltration

STORMWATER MANAGEMENT REPORT FRANKLIN DRIVE SUBDIVISION MULTI-FAMILY DEVELOPMENT & COMMERCIAL DEVELOPMENT WINDHAM, MAINE

1. Introduction

This Stormwater Management Report has been prepared to address the potential impacts associated with the multi-family and commercial projects due to proposed modifications in stormwater runoff characteristics and land cover changes. The stormwater management controls that are outlined in this report have been designed to suit the proposed development and to comply with applicable regulatory requirements.

2. Existing Conditions

The project sites can be identified as Lot #1 and Lot #2 in the Franklin Drive Subdivision. The total subdivision consists of approximately 38.59 acres of undeveloped land located at 20 Franklin Drive in Windham, Maine. The subdivision is bounded by The Home Depot (part of the Windham Mall) to the south, the Windham Veterans Center to the east, and undeveloped land to the north and west. Lot #1 of the Franklin Drive Subdivision is approximately 3.35 acres and is bounded by the extension of Franklin Drive to the west, undeveloped land to the north, the Windham Veterans Center to the east, and land used for stormwater treatment from The Home Depot to the south. Lot #2 of the Franklin Drive Subdivision is approximately 7.88 acres and is bounded by The Home Depot (part of the Windham Mall) to the south, undeveloped land to the north, and the extension of Franklin Drive to the south. Lot #2 of the Franklin Drive Subdivision is approximately 7.88 acres and is bounded by The Home Depot (part of the Windham Mall) to the south, undeveloped land to the west, Lot #3 to the north, and the extension of Franklin Drive to the east.

The Franklin Drive Subdivision project was permitted and approved by the Town of Windham Planning Board on January 13^{th,} 2025. This project included the subdivision of the existing parcel into four (4) lots (labeled Lot #1 through Lot #4) along with the extension of Franklin Drive along the frontage of the subject site. The applicant is proposing to develop Lots 1 through 3, starting with Lot 2 (this project)

Slopes on the site range from generally flat along Franklin Drive, but range from flat to steep throughout the wooded portion of the property. There are approximately 2.5 acres of steep slopes located throughout the site. There are approximately 13.4 acres of wetlands located on the site within Lot #3, including a vernal pool of special significance with an approximate size of 0.53 acres. Wetland and vernal pool delineations were conducted by Mark Hampton Associates and Flycatcher, respectively, in 2020.

Most of the site is located within the Sebago Lake Watershed. This lake is listed in Chapter 502 of the Maine Department of Environmental Protection (MDEP) regulations as a Lake

Most at Risk from New Development, but is not severely blooming. Phosphorus calculations have been included in Appendix A.

The proposed development area of the site is not located in an identified flood zone, nor is the site located in any Shoreland Zone. The site is located in the Commercial 1 (C-1) District and is identified on the Town of Windham Tax Map 18 as Lot 26-2-A.

3. <u>Soils</u>

Soil characteristics were obtained from the NRCS Web Soil Survey completed by Sebago Technics. The Hydrologic Groups (HSG) of the soils is classified by Technical Release TR-55 of the Soil Conservation Service as follows:

Soil Map Symbol	Soil Name	Slope (%)	HSG
HIB	Hinckley loamy sand	3-8	А
HgB	Hermon sandy loam	3-8	А
Wa	Walpole fine sandy loam	0-3	A/D
Sp	Sebago mucky peat	0-1	A/D

Hydrologic Soil Group boundaries are delineated on the Watershed Map. A copy of the Class D Medium Intensity Soil Survey is included as Appendix 4.

4. <u>Proposed Site Improvements</u>

The proposed development includes the construction of two (2) 150-unit residential buildings with resident amenities, landscaped areas, parking, sidewalks, and access driveways connecting to Franklin Drive. The project will also consist of associated grading, underground utility connections, and stormwater management infrastructure. The project will result in the creation of 7.7 acres of impervious area and 10.7 acres of total developed area.

5. Existing Conditions Model

The pre-development watershed plan consists of six (6) subcatchments labeled 1.0S, 1.1S, 2.0S, 2.1S, 3.0S, and 4.0S in the HydroCAD model. Four (4) locations were identified as Points of Analysis (POA) for comparing peak runoff rates. The first point of analysis represents an existing best management practice (BMP) that is located south of Franklin Drive, on the abutting property. The second point of analysis represents a significant vernal pool, which is located in the eastern portion of Lot #3. The third point of analysis represents a low point located in the northern corner of Lot #3 that contains a wetland. The fourth point of analysis represents the abutting property west of the subject site.

POA-1: Subcatchments 1.0S and 1.1S are tributary to this point of analysis with a combined area of approximately 8.5 acres. This area includes a portion of Franklin Drive, portions of the abutting properties along the southern border of the site, and a portion of both the cleared and wooded areas in the southern region of Lot #1 and Lot #2.

POA-2: Subcatchments 2.0S and 2.1S are tributary to this point of analysis with a cumulative area of approximately 8.2 acres. Subcatchment 2.0S includes the extension of Franklin Drive that was proposed and approved by the Town of Windham Planning Board in January 2025. This area is proposed to be treated by an underdrained soil filter that has an outlet pipe towards POA-2. Subcatchment 2.01S includes the majority of the wooded area in Lot #1 and a portion of the wooded area in Lot #3.

POA-3: Subcatchment 3.0S is tributary to this point of analysis with an area of approximately 5.1 acres. This area includes a portion of both the cleared and wooded areas in Lot #2 and a portion of the wooded area in Lot #3.

POA-4: Subcatchment 4.0S is tributary to this point of analysis within an area of approximately 0.9 acres. This area primarily consists of an undeveloped wooded area located in the northern portion of Lot #2.

The total acreage within this study is approximately 22.7 acres.

6. <u>Proposed Conditions Model</u>

The post-development watershed area consists of the same overall area as the predevelopment plan; however, the pre-development subcatchments have been broken into smaller watersheds as a result of the proposed development. There is a total of nine (9) subcatchments in the proposed conditions model for a total area of approximately 22.7 acres.

The project is proposed to meet the flooding standard by infiltration of a portion of the runoff into the subsurface soils to mimic the existing on-site condition of the HSG A soils. Infiltration tests were performed by SW Cole and indicated infiltration rates of 18.7 and 22.9 in/hr. Treatment will occur in subsurface sand filters, and treated water will be directed to a secondary infiltration bed that has been conservatively designed for 10 in/hr.

POA1: Subcatchment 10.0S is tributary to this point of analysis with an approximate area of 4.7 acres. This area includes a portion of Franklin Drive, portions of the abutting properties along the southern border of the site, and a portion of both the cleared and wooded areas in the southern region of Lot #1 and Lot #2.

POA-2: Subcatchments 20.0S, 21.0S, and 22.0S are tributary to this point of analysis with a cumulative area of approximately 9.1 acres. Subcatchment 21.0S includes the extension

of Franklin Drive that was proposed and approved by the Town of Windham Planning Board in January 2025. This area is proposed to be treated by an underdrained soil filter that has an outlet pipe towards POA-2. Subcatchment 20.0S includes the majority of the wooded area in Lot #1 and a portion of the wooded area in Lot #3. Subcatchment 22.0S includes the proposed commercial development of Lot #1. Stormwater from this subcatchment will be treated by a subsurface sand filter to meet water quality treatment requirements, and will utilize a separate subsurface chamber system for detention and infiltration to meet flooding standards.

POA-3: Subcatchments 30.0S through 30.3S are tributary to this point of analysis with a cumulative area of approximately 8.3 acres. Stormwater from subcatchments 30.2S and 30.3S will flow to two (2) separate subsurface sand filters for water quality treatment. The stormwater from these subcatchments will then flow to a separate subsurface chamber system for detention and infiltration to meet flooding standards. Stormwater from subcatchment 30.1S will flow to a subsurface sand filter for both water quality treatment and detention to meet flooding standards.

POA-4: Subcatchment 4.0S is tributary to this point of analysis within an area of approximately 0.6 acres. This area primarily consists of an undeveloped wooded area located in the northern portion of Lot #2.

The proposed Best Management Practices (subsurface sand filters) have been designed and sized in accordance with DEP BMP standards contained within Chapter 500 and the BMP Manual. Sizing calculations can be found in Appendix 1.

7. Stormwater Management

Basic Standard - Chapter 500, Section 4(B)

Since the project will disturb more than one (1) acre of land area, MDEP Basic Standards apply, requiring that grading or other construction activities on the site do not impede or otherwise alter drainage ways to have an unreasonable adverse impact. We have avoided adverse impacts by providing an Erosion & Sedimentation Control Plan, and an Inspection, Maintenance, and Housekeeping Plan (Appendix 3) to be implemented during construction and post-construction stabilization of the site. These construction requirements have been developed following Best Management Practice guidelines.

General Standard - Chapter 500, Section 4(C)

Since the project will create more than one (1) acre of impervious surface, MDEP General Standards apply, which require a project's stormwater management system to include treatment measures that will mitigate for the increased frequency and duration of channel erosive flows due to runoff from smaller storms, provide for effective treatment of pollutants in stormwater, and mitigate potential temperature impacts. The General

Standards require treatment of no less than 95% of the site's created impervious area and no less than 80% of the site's created developed area (landscaped area and impervious area combined).

To mitigate the changes in hydrologic patterns due to this phase of the development, three (3) subsurface sand filters with associated subsurface chamber systems have been implemented into the stormwater management infrastructure. Filtration BMPs are very effective at removing a wide range of pollutants through the use of granular filter media.

Through the use of the aforementioned BMP's at least 95% of new impervious area and at least 80% of new developed area will be receiving treatment. This meets the requirements for the Maine DEP General Standards. BMP sizing and treatment calculations are provided as Appendix 1.

Phosphorus Standard - Chapter 500, Section 4(D)

As stated previously, Sebago Lake is identified as a Lake Most at Risk, but not categorized as severely blooming, as referenced in MDEP Chapter 502. Therefore, because the project results in 1 acre or more of impervious area, the project is subject to the Phosphorus Standards of MDEP Chapter 500.

Four (4) subsurface chamber systems with subsurface sand filters are proposed for the treatment of stormwater runoff generated by the proposed development. Two (2) separate subsurface chamber systems are proposed for the attenuation of stormwater runoff. The BMPs have been designed per the MDEP Stormwater BMP Manual, as well as Volume II: Phosphorus Control Manual of the Maine Stormwater Management Design Manual. The subsurface filtration strategy was chosen as the most appropriate BMP for this project since it provides an effective means of filtration for contaminants commonly found in stormwater and is the best fit for the current site constraints.

A per-acre phosphorus allocation calculation was completed for the project using the High Export Option to determine if the allowable per-acre phosphorus allocation for the Sebago Lake Watershed is achieved. The total acreage of the development parcel is approximately 38.6 acres. The wetland area was obtained using NWI wetlands, as well as wetlands mapped by Mark Hampton, and is equal to 13.4 acres. Steep slope areas (slopes greater than 25%) equal 2.5 acres. Therefore, the project phosphorus budget for the project parcel is equal to 1.20 lbs. P/year. The pre-treatment phosphorus export (pre-PPE) was calculated to be 10.46 lbs. P/year. With the implementation of the proposed stormwater treatment for newly developed areas, approximately 3.84 lbs. P/year (post-PPE) will be exported off-site in the proposed condition. Since the post-treatment phosphorus export is larger than the pre-treatment phosphorus export, the project is proposing mitigation by paying the compensation fee. Calculations associated with the removal of phosphorus can be referenced in Appendix 1.

Flooding Standard - Chapter 500, Section 4(F)

The proposed project will create more than three (3) acres of impervious surface, MDEP Flooding Standards must be met. The Flooding Standard requires that a project's stormwater management system detain, retain, or result in the infiltration of stormwater from 24-hour storms of the 2, 10, and 25-year frequencies such that the peak flows of stormwater from the project site do not exceed the peak flows of stormwater prior to undertaking the project. As such, a runoff evaluation was performed using the methodology outlined in the USDA Soil Conservation Service's "Urban Hydrology for Small Watersheds - Technical Release #55 (TR-55)". HydroCAD computer software was utilized to perform the calculations.

HydroCAD Stormwater Analysis

Runoff curve numbers were determined for each of the watersheds by measuring the area of each hydrologic soil group within each type of land cover. The type of land cover was determined based on survey data, field reconnaissance and aerial photography. Times of concentration were determined from site topographic maps in accordance with SCS procedures.

The 24-hour rainfall values utilized in the hydrologic model were obtained from Appendix H of MDEP's Chapter 500: Stormwater Management (effective date August 2015). Rainfall values for York County are listed in the table below.

	ecipitation (in./24 hr) County
2-year	3.3
10-year	4.9
25-year	6.2

The following table presents the results of the peak runoff calculations at the analysis points for the existing and proposed conditions.

Peak Runoff Rate Summary Table								
Analysis Point	Storm Event	Existing Conditions (cfs)	Proposed Conditions (cfs)					
	2-year	0.9	0.7					
POA-1	10-year	1.4	1.0					
	25-year	1.8	1.3					
	2-year	1.4	1.4					
POA-2	10-year	2.1	2.1					
	25-year	2.7	2.7					

	2-year	0.2	0.1
POA-3	10-year	0.4	0.2
	25-year	0.5	0.3
	2-year	0.0	0.0
POA-4	10-year	0.0	0.0
	25-year	0.0	0.0

The HydroCAD Data output sheets from this analysis are appended to this report (Appendix 2) along with the Stormwater Management Plans (Appendix 5). The model predicts that the peak runoff rates in the post-development condition at the points of analysis are at or below pre-development runoff rates for the 2, 10, and 25-year storm events with implementation of the proposed stormwater management practices.

8. <u>Summary</u>

The proposed development has been designed to manage stormwater runoff through Best Management Practices approved by MDEP. Stormwater BMPs provide treatment to at least 95% of impervious areas, and at least 80% of the total developed area. Runoff discharging from the site will be at or below pre-development conditions for the 2, 10, and 25-year storm events at all four points of analysis. Additionally, erosion and sedimentation controls, along with associated maintenance and housekeeping procedures, have been outlined to prevent unreasonable impacts on the site and the surrounding environment.

Prepared by:

SEBAGO TECHNICS, INC.

Robert A. McSorley, P.E. Senior Project Manag

burn like

Brandon Blake Senior Civil Engineer

Robert A. McSorley, PE License Reg. No. 8588 June 23, 2025

Appendix 1

Stormwater Quality Calculations & Phosphorus Calculations

Table 1: MDEP GENERAL STANDARD CALCULATIONS

Job # 230411-01

		EXISTING ONSITE		EXISTING ONSITE	NEW ONSITE	NET NEW	NET EXISTING		IMPERVIOUS		DEVELOPED	
AREA ID	WATERSHED SIZE	IMPERVIOUS AREA TO REMAIN	NEW ONSITE IMPERVIOUS AREA	LANDSCAPED AREA TO REMAIN	LANDSCAPED AREA	DEVELOPED AREA	DEVELOPED AREAS	TREATMENT PROVIDED?	AREA TREATED	LANDSCAPED AREA TREATED	AREA TREATED	TREATMENT BMP
	(S.F.)		(S.F.)	(S.F.)	(S.F.)	(S.F.)	(S.F.)		(S.F.)	(S.F.)	(S.F.)	
10.0S	207,220	15,903	0	9,266	18,405	18,405	25,169	N	0	0	0	None
20.0S	227,432	28,189	0	0	606'6	606'6	28,189	ON	0	0	0	None
21.0S	50,218	0	28,127	0	22,091	50,218	0	YES	28,127	22,091	50,218	UDSF-1
22.0S	120,447	0	266'26	0	27,455	120,447	0	YES	92,992	27,455	120,447	SSF-4
30.0S	106,675	1,271	0	0	8,750	8,750	1,271	ON	0	0	0	None
30.1S	52,105	0	42,649	0	9,456	52,105	0	YES	42,649	9,456	52,105	SSF-3
30.2S	131,790	0	115,447	0	16,343	131,790	0	YES	115,447	16,343	131,790	SSF-1
30.3S	67,415	0	59,055	0	8,360	67,415	0	YES	59,055	8,360	67,415	SSF-2
40.0S	27,615	0	0	0	7,647	7,647	0	NO	0	0	0	None
TOTAL (S.F.)	990,917	45,363	338,270	9,266	128,416	466,686	54,629		338,270	83,705	421,975	

TOTAL NEW IMPERVIOUS AREA (S.F.)	338,270	TOTAL DEVELOPED AREA (S.F.)	521,315
TOTAL IMPERVIOUS AREA RECEIVING TREATMENT (S.F.)	338,270	TOTAL AREA RECEIVING TREATMENT (S.F.)	421,975
% OF IMPERVIOUS AREA RECEIVING TREATMENT*	100.00%	% OF AREA RECEIVING TREATMENT	80.94%
*INCLUDES THE TREATMENT OF EXISTING IMPERVIOUS AND DEVELOPED AREAS THAT ARE NOT CURRENTLY RECEIVING TREATMENT	ING TREATMENT		

		SEBAG	O TECHNIC	S, INC.			JOB		230411-01				
75 John Roberts Road Suite 4A South Portland, Maine 04106					SHEET NO.		1			1			
South Portland, Maine 04106 Tel. (207) 200-2100			CALCULATED BY			BJB			5/23/2				
.		Tel.	(207) 200-21	.00			FILE NAME		230411-01 WO	۷.xlsx کار	PRNT DATE	6/20/2	2025
					UNDERDRAIN			D FILTER					
Task:		Calculate	water qual	lity volume pe	r MDEP chapt	er 500 regula	ations						
Refere	ences	1. Maine		er 500, Sectio									
					olume equal to					L			
			the subcat	tchment's imp	ervious area p	lus 0.4 inch	times the s	subcatchme	ent's landscape	ed area"			
				-	Practices Storn				L			-	
		a.			equal to 1.0 in			nent's impe	rvious area			-	
					ubcatchment'								
		b.			d filter bed an								
					rvious area dr	-				L			
		с.					ow is the pi	rojected on	e year peak flo	ow rate			
					eding the Isola	tor Row"						$\left - \right $	
			Flow rates	1	-f- /							$\left - \right $	
┝──┤			SC-310	0.10	cfs/chamber				<u> </u>			\vdash	
┝──┤			SC-800	0.20	cfs/chamber				<u> </u>			\vdash	
╞──┤			DC-780	0.20	cfs/chamber							\vdash	
			MC-3500	0.30	cfs/chamber	L	L			L		L	
╞──┤		d.			-	ivel layer sho	ould be pro	ovided with	at least one p	ort per 500	J square-fe	et	
╞──┤			ot subsurf	ace filter area								\vdash	
Teilerri	anuta Culu	urfage (-)	d Filter						<u> </u>			\vdash	
<u>iributa</u>	ary to Subsu	urtace San	u Fiiter	SSF-1								\vdash	
╞──┤												\vdash	
	Landscaped	d Area		16,343.00	SF			1				\vdash	
	Impervious	Area		115,447.00	SF			1				-	
							-						
Minim	um Surface	Area for s	and filter a	and chamber s	system							-	
	Required		(2% X Land	dscaped + 5%'	' X Impervious)						-	
	Total Lands	caped Are	a	16,343.00	SF	Area	326.9	SF					
	Total Impe	rvious Area	a	115,447.00	SF	Area	5,772.4	SF					
			Requ	ired Minimum	n Surface Area		6,099.2	SF					
											No. of Insp	pectio	n Ports
\vdash				Provideo	l Surface Area		7,688.0	SF		16		\vdash	
												\vdash	
Treatn	nent Volum	e					<u> </u>	<u> </u>				\vdash	
\vdash						<u> </u>			<u> </u>			\vdash	
	Required		(0.4" X Lar	ndscaped + 1.0)" X Imperviou	s)						\vdash	
												\vdash	
	Landscaped	d Area		16,343.00	SF	Volume	544.8					\vdash	
						<u> </u>						\vdash	
\vdash	Impervious	Area		115,447.00	SF	Volume	9,620.6		<u> </u>			\vdash	
												\vdash	
\vdash			Т	reatment Vol	ume Required		10,165.4	CF	0.233	AF		⊢	
				<u> </u>						L		\vdash	
			F	Provided Treat	ment Volume		10,658.0	CF	WQV Elev.= 3	17.50		\vdash	
Sedim	ent Pre-Tre	atment					<u> </u>	<u> </u>	<u> </u>	<u> </u>		⊢	
┣──┤							<u> </u>	<u> </u>		<u> </u>		\vdash	
	Per Referen	nce 2.c abo	ove			<u> </u>	<u> </u>	<u> </u>	<u> </u>			\vdash	
		One	year flow r	ate out put fr	om Hydrocad:	6.90	cfs	<u> </u>	ļ	<u> </u>		\vdash	
							<u> </u>	<u> </u>		<u> </u>		\vdash	
			ISO R	low sizing for:	SC-800	0.2	cfs						
			150 1)				
	Tc	otal numbe		or Row Chamb	pers required:	35							

SEBAGO TECHNICS, INC.

75 John Roberts Road, Suite 4A South Portland, Maine 04106 (207) 856-0277 FAX (207) 856-2206

JOB	230411-01		
SHEET NO.	1	OF	1
CALCULATED BY	BJB	DATE	5/23/2025
CHECKED BY	RAM		
FILE NAME	230411-01 WQC	PRINT DATE	6/20/2025

ORIFICE SIZING CALCULATION

Stormwater BMP:	SSF-1						
Orifice Equation	Q = CA v(2gh)						
	Discharge (cfs)						
A = Orifice A							
	ional Constant (32.2 ft/s ²)						
	f water above the flow line (center) of the orifice (ft)						
C = 0.6	Orifice coefficient (usually assumed = 0.6)						
Avorago dischargo rat	e required to drawdown the treatment volume in a						
desired amount of time is:							
Q = WQv							
Tcf							
TV = Treatme	ent Volume (cf)						
T = Target D	Drain Time (Hours)						
cf = Convers	ion Factor = 3600 sec/hr						
TV = 10,165	5 cf						
t = 24	hr						
o							
Q = TV	0.12 cfs Target Rate for 24 hour discharge						
tCF surface area of filter =	6,099 SF						
surface area of filter =	0,099 SF						
hmax = 1.67	ft h/2= 0.83 ft						
A = Q	A = 0.027 sf = 3.85 sq. in.						
C √(2gl							
	Diam = 2.22 in						

Summary for Pond 30.2P: SSF-1

 Inflow Area =
 131,790 sf, 87.60% Impervious, Inflow Depth = 0.93" for SSF-1 WQV event

 Inflow =
 3.1 cfs @
 12.08 hrs, Volume=
 10,236 cf

 Outflow =
 0.2 cfs @
 13.36 hrs, Volume=
 10,238 cf, Atten= 93%, Lag= 76.7 min

 Primary =
 0.2 cfs @
 13.36 hrs, Volume=
 10,238 cf

 Routed to Pond 5P : StormTech - Detention Only
 10,238 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 316.43' @ 13.36 hrs Surf.Area= 15,177 sf Storage= 4,241 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 161.7 min (941.7 - 780.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	315.50'	6,826 cf	82.25'W x 89.17'L x 3.75'H Field A
			27,502 cf Overall - 10,437 cf Embedded = 17,065 cf x 40.0% Voids
#2A	316.00'	10,437 cf	ADS_StormTech SC-800 +Cap x 204 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			204 Chambers in 17 Rows
			Cap Storage= 3.4 cf x 2 x 17 rows = 116.3 cf
#3B	315.50'	311 cf	6.25'W x 46.47'L x 3.75'H Field B
			1,089 cf Overall - 310 cf Embedded = 779 cf x 40.0% Voids
#4B	316.00'	310 cf	ADS_StormTech SC-800 +Cap x 6 Inside #3
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			Cap Storage= 3.4 cf x 2 x 1 rows = 6.8 cf
#5	313.33'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			16,390 cf Overall x 0.0% Voids
		17,885 cf	Total Available Storage

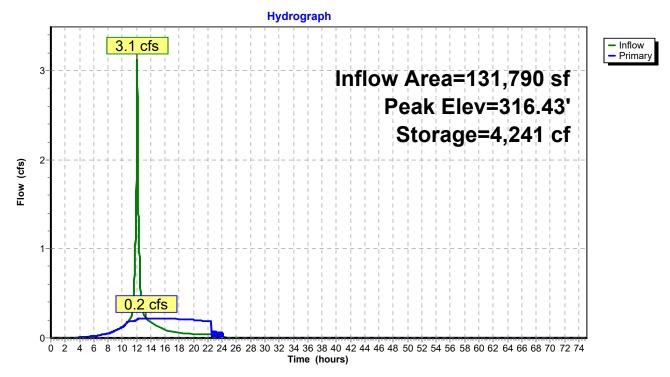
Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Elevatio		Surf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
313.3	33	7,553	0	0				
315.5	50	7,553	16,390	16,390				
Device	Routing	Invert	Outlet Devices					
#1	Primary	313.23'	24.0" Round C	ulvert				
			L= 46.0' CPP, s	square edge h	neadwall, Ke= 0.500			
			Inlet / Outlet Inv	ert= 313.23'/	312.05' S= 0.0257 '/' Cc= 0.900			
			n= 0.013 Corrug	gated PE, smo	both interior, Flow Area= 3.14 sf			
#2	Device 1	313.33'	2.2" Vert. UD ca	ap for bleede	r C= 0.600			
			Limited to weir fl	Limited to weir flow at low heads				
#3	Device 1	317.50'	6.0' long x 0.5'	breadth Broa	ad-Crested Rectangular Weir			
			Head (feet) 0.20	0 0.40 0.60	0.80 1.00			
			Coef. (English)	2.80 2.92 3.	08 3.30 3.32			
#4	Device 3	316.20'	24.0" Round O					

230411-01 Post Conditions Type III 24-hr SSF-1 WQV Rainfall=1.28" Prepared by Sebago Technics HydroCAD® 10.20-7a s/n 00643 © 2025 HydroCAD Software Solutions LLC

Printed 6/20/2025 Page 2

L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 316.20' / 316.14' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf


Primary OutFlow Max=0.2 cfs @ 13.36 hrs HW=316.43' TW=311.28' (Dynamic Tailwater) **1=Culvert** (Passes 0.2 cfs of 22.4 cfs potential flow)

-2=UD cap for bleeder (Orifice Controls 0.2 cfs @ 8.35 fps)

3=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

4=Overflow to OCS (Controls 0.0 cfs)

Pond 30.2P: SSF-1

			O TECHNIC				JOB		230411-01				
75 John Roberts Road Suite 4A South Portland, Maine 04106							SHEET NO.		1OF			1 5/23/2025	
			(207) 200-21				CALCULATED BY		BJB 230411-01 WC			6/20/	
		Tel.	(207) 200-21	.00			FILE NAME		230411-01 WC	(V.AISA	PRNT DATE	0/20/	2023
					UNDERDRAIN	ED SUBSUR	FACE SAN	D FILTER					
Task:		Calculate	water qual	lity volume pe	r MDEP chapt								
Refere	ences	1. Maine	DEP Chapt	er 500, Sectio	n 4.C.(3)(b)								
					olume equal to	0 1.0 inch tin	nes						
			the subcat	chment's imp	ervious area p	lus 0.4 inch	times the s	subcatchme	ent's landscape	ed area"			
		2. Maine	DEP Best N	Aanagement F	Practices Storn	nwater Man	ual, Sectio	n 7.3.2					
		a.	"detain ru	noff volume e	equal to 1.0 in	ch times the	subcatchr	nent's impe	ervious area				
			plus 0.4 in	ch times the s	ubcatchment'	s landscape	d area"						
		b.	"surface a	rea of the san	d filter bed an	d chamber s	ystem mus	st be at leas	st				
			equal to 5	% of the impe	rvious area dr	aining to it a	nd 2% of t	he landsca	oed area."				
		с.	"treatmen	t flow rate for	r the Stormtec	h Isolator Ro	ow is the p	rojected or	e year peak flo	ow rate			
			for the dra	ainage area fe	eding the Isola	tor Row"							
L			Flow rates										
			SC-310	0.10	cfs/chamber								
			SC-740	0.20	cfs/chamber								
			DC-780	0.20	cfs/chamber								
			MC-3500	0.30	cfs/chamber								
		d.		-	-	ivel layer sh	ould be pro	ovided with	at least one p	ort per 500) square-f	eet	
			of subsurf	ace filter area									
Tailerat	an ta Cuba		al Eilean	SSF-2									
Tribut	ary to Subsi	urrace San	a Filter	55F-Z									
		1.4		0.000.00	CF								
	Landscape	a Area		8,360.00	SF								
		A			C.F.								
	Impervious	Area		59,055.00	SF								
	Required		(2% X Land	dscaped + 5%'	' X Impervious)							
	Total Lands	scaped Are	a	8,360.00	SF	Area	167.2	SF					
	Total Impe	rvious Are	a	59,055.00	SF	Area	2,952.8	SF					
			Dam				2 1 2 0 0	C.F.					
			кеци		n Surface Area		3,120.0	5F		Required	No of Inc	ooctic	n Porte
				Provideo	l Surface Area		3,651.0	SE		8		Jecui	JII FOILS
				FTOVIDED	Juliace Alea		3,031.0	51		0			
Treatr	nent Volum	e									1		
		-											
	Required		(0.4" X Lar	ndscaped + 1.0)" X Imperviou	is)							
L						Ĺ							
	Landscape	d Area		8,360.00	SF	Volume	278.7						
													-
	Impervious	Area		59,055.00	SF	Volume	4,921.3						
ļ													
ļ			Т	reatment Vol	ume Required		5,199.9	CF	0.119	AF			
L													
-			F	Provided Treat	ment Volume		7,016.0	CF	WQV Elev.= 3	16.76			
Sedim	ent Pre-Tre	atment										$\left - \right $	
	n												
-	Per Referei	nce 2.c ab	ove										
		~				4.00						$\left - \right $	
		One	year flow r	ate out put fr	om Hydrocad:	4.00	cfs						
			1000	ow sizing for	50 740	0.2	ofe						
			ISO R	ow sizing for:	SC-740	0.2	cfs						
	т.	tal numb		or Row Chamb	ers required.	20							
	10				ers required:	20							
		1		1	1		1	1	1			1	

SEBAGO TECHNICS, INC.

75 John Roberts Road, Suite 4A South Portland, Maine 04106 (207) 856-0277 FAX (207) 856-2206

JOB	230411-01		
SHEET NO.	1	OF	1
CALCULATED BY	BJB	DATE	5/23/2025
CHECKED BY	RAM		
FILE NAME	230411-01 WQC	PRINT DATE	6/20/2025

ORIFICE SIZING CALCULATION

Stormwater BMP: SSF-2
Orifice Equation $Q = CA v(2gh)$
Q = Rate of Discharge (cfs)
A = Orifice Area (sf)
G = Gravitational Constant (32.2 ft/s2)
h = Depth of water above the flow line (center) of the orifice (ft) C = 0.6 Orifice coefficient (usually assumed = 0.6)
Average discharge rate required to drawdown the treatment volume in a
desired amount of time is:
Q = WQv
Tcf
TV = Treatment Volume (cf)
T = Target Drain Time (Hours)
cf = Conversion Factor = 3600 sec/hr
TV = <u>5,200</u> cf
t = <u>24</u> hr
Q = TV 0.06 cfs Target Rate for 24 hour discharge
tCF
surface area of filter = 3,120 SF
hmax = 1.67 ft h/2= 0.83 ft
A = Q = 0.014 sf = 1.97 sq. in.
Diam = 1.58 in

Summary for Pond 31.0P: SSF-2

 Inflow Area =
 67,415 sf, 87.60% Impervious, Inflow Depth =
 0.93" for SSF-2 WQV event

 Inflow =
 1.6 cfs @
 12.08 hrs, Volume=
 5,236 cf

 Outflow =
 0.1 cfs @
 13.33 hrs, Volume=
 5,237 cf, Atten= 93%, Lag= 74.9 min

 Primary =
 0.1 cfs @
 13.33 hrs, Volume=
 5,237 cf

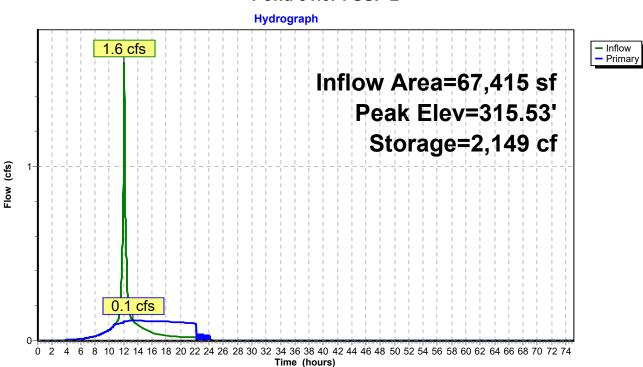
 Routed to Pond 5P : StormTech - Detention Only
 5,237 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 315.53' @ 13.33 hrs Surf.Area= 8,744 sf Storage= 2,149 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 156.5 min (936.5 - 780.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	314.76'	4,865 cf	40.50'W x 125.75'L x 3.75'H Field A
			19,098 cf Overall - 6,935 cf Embedded = 12,163 cf x 40.0% Voids
#2A	315.26'	6,935 cf	ADS_StormTech SC-800 +Cap x 136 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			136 Chambers in 8 Rows
			Cap Storage= 3.4 cf x 2 x 8 rows = 54.7 cf
#3	312.59'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			7,923 cf Overall x 0.0% Voids
		11,800 cf	Total Available Storage

Storage Group A created with Chamber Wizard


Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
312.5	59	3,651	0	0		
314.7	76	3,651	7,923	7,923		
Device	Routing	Invert	Outlet Devices			
#1	Primary	312.49'	Inlet / Outlet Inv	square edge h ert= 312.49' / 3	eadwall, Ke= 0.500 312.03' S= 0.0131 '/' Cc= 0.900 both interior, Flow Area= 3.14 sf	
#2	Device 1	312.59'	•			
#3	Device 1	316.76'	6.0' long x 0.5' Head (feet) 0.20 Coef. (English)	0 0.40 0.60 0		
#4	Device 3	315.46'	24.0" Round O L= 6.0' CMP, s Inlet / Outlet Inve	verflow to OC quare edge he ert= 315.46' / 3		

Primary OutFlow Max=0.1 cfs @ 13.33 hrs HW=315.53' TW=311.28' (Dynamic Tailwater) -1=Culvert (Passes 0.1 cfs of 21.6 cfs potential flow)

-2=UD cap for bleeder (Orifice Controls 0.1 cfs @ 8.16 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

4=Overflow to OCS (Controls 0.0 cfs)

Pond 31.0P: SSF-2

		SEBAG	O TECHNIC	S, INC.			JOB		230411-01				
			Roberts Road				SHEET NO.		1		•	1	
			ortland, Maine				CALCULATED BY		BJB			5/23/	
r		Tel.	(207) 200-21	.00			FILE NAME	1	230411-01 WC	QV.xlsx	PRNT DATE	6/20/	2025
					UNDERDRAIN			D FILTER					
Task:		Calculate	water qual	lity volume pe	r MDEP chapte	er 500 regul	ations						
- (500 0									
Refere	ences	1. Maine		er 500, Sectio									
					olume equal to								
			the subcat	conment's imp	ervious area p	olus 0.4 inch	times the s	subcatchme	ent's landscape	ed area			
		2						. 7 2 2					
				*	Practices Storn								
		a.			equal to 1.0 in			nent s impe	rvious area				
		b.			ubcatchment'								
		D.			d filter bed an								
-		6			rvious area dra	-				ow rate			
-		с.			the Stormtec eding the Isola		Jw is the p	lojecteu on	e year peak ni	JWTale			
			Flow rates		came the ISUId								
			SC-310	0.10	cfs/chamber								
			SC-310 SC-740	0.10	cfs/chamber								
			DC-780	0.20	cfs/chamber								
			MC-3500	0.20	cfs/chamber								
		d.			underdrain gra	vel laver sh	ould be pro	ovided with	at least one n	ort per 50	0 square-fe	eet	
-		<u>.</u> .		ace filter area		2	ve pre						
<u>Tribu</u> t	ary to Subsi	urface San	d Filter	SSF-3									
	Landscaped	d Area		9,456.00	SF								
	Impervious	Area		42,649.00	SF								
	•												
Minim	um Surface	Area for s	and filter a	and chamber s	system								
	Required		(2% X Land	dscaped + 5%'	X Impervious)							
	Total Lands	scaped Are	a	9,456.00	SF	Area	189.1	SF					
	Total Impe	rvious Are	а	42,649.00	SF	Area	2,132.5	SF					
			Requ	ired Minimum	Surface Area		2,321.6	SF					
										Required	No. of Insp	pectio	on Ports
				Provideo	Surface Area		6,731.0	SF		14			
Treatr	nent Volum	e											
	Required		(0.4" X Lar	ndscaped + 1.0)" X Imperviou	is)							
	Landscaped	d Area		9,456.00	SF	Volume	315.2						
	Impervious	Area		42,649.00	SF	Volume	3,554.1						
			Т	reatment Vol	ume Required		3,869.3	CF	0.089	AF			
			F	Provided Treat	ment Volume		9,061.0	CF	WQV Elev.= 3	10.35			
Sedim	ent Pre-Tre	atment											
	Per Referer	nce 2.c abo	ove										
		One	year flow r	ate out put fr	om Hydrocad:	1.80	cfs						
				<u> </u>									
			ISO R	ow sizing for:	SC-740	0.2	cfs						
	Тс	otal numbe	er of Isolato	or Row Chamb	ers required:	9							

SEBAGO TECHNICS, INC.

75 John Roberts Road, Suite 4A South Portland, Maine 04106 (207) 856-0277 FAX (207) 856-2206

JOB	230411-01		
SHEET NO.	1	OF	1
CALCULATED BY	BJB	DATE	5/23/2025
CHECKED BY	RAM		
FILE NAME	230411-01 WQC	PRINT DATE	6/20/2025

ORIFICE SIZING CALCULATION

Stormwater BMP:	SSF-3
Orifice Equation	Q = CA v(2gh)
	of Discharge (cfs)
A = Orifice	
	ational Constant (32.2 ft/s ²)
	of water above the flow line (center) of the orifice (ft)
C = 0.6	Orifice coefficient (usually assumed = 0.6)
Average discharge re	ate required to draudour the treatment values in a
desired amount of ti	ate required to drawdown the treatment volume in a ime is:
Q = WC	
α Τc	
TV = Treatr	nent Volume (cf)
	t Drain Time (Hours)
-	ersion Factor = 3600 sec/hr
TV = 3,86	69 cf
t = 24	4 hr
Q =V	
tCl	
surface area of filter	r = 2,321 SF
hmax = 1.6	7 ft h/2= 0.83 ft
1111dX = 1.0	1/2 = 0.83 ft
A =Q	A = 0.010 sf = 1.47 sq. in.
C V(2	
, i i i i i i i i i i i i i i i i i i i	Diam = 1.37 in

Summary for Pond 30.1P: SSF-3

 Inflow Area =
 52,105 sf, 81.85% Impervious, Inflow Depth = 0.89" for SSF-3 WQV event

 Inflow =
 1.2 cfs @
 12.08 hrs, Volume=
 3,886 cf

 Outflow =
 0.1 cfs @
 13.34 hrs, Volume=
 3,887 cf, Atten= 93%, Lag= 75.5 min

 Primary =
 0.1 cfs @
 13.34 hrs, Volume=
 3,887 cf

 Routed to Link POA-3 : POA-3
 13.34 hrs, Volume=
 3,887 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 308.90' @ 13.34 hrs Surf.Area= 8,922 sf Storage= 1,586 cf

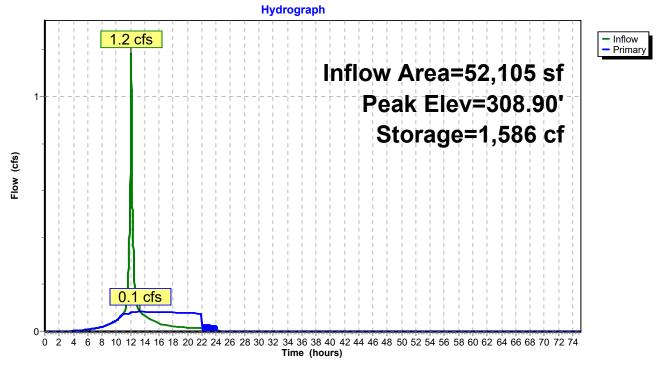
Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 155.3 min (934.7 - 779.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	308.35'	6,022 cf	49.00'W x 131.87'L x 3.75'H Field A
			24,231 cf Overall - 9,175 cf Embedded = 15,055 cf x 40.0% Voids
#2A	308.85'	9,175 cf	ADS_StormTech SC-800 +Cap x 180 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			180 Chambers in 10 Rows
			Cap Storage= 3.4 cf x 2 x 10 rows = 68.4 cf
#3	306.18'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			5,340 cf Overall x 0.0% Voids
		15,197 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
306.1	18	2,461	0	0	
308.3	35	2,461	5,340	5,340	
Device	Routing	Invert	Outlet Devices		
#1	Primary	306.08'	L= 115.0' CPP Inlet / Outlet Inv	, projecting, no ert= 306.08' / 3	o headwall, Ke= 0.900 304.75' S= 0.0116 '/' Cc= 0.900 poth interior, Flow Area= 3.14 sf
#2	Device 1	306.18'		ap for bleede	r C= 0.600
#3	Device 5	309.05'	Inlet / Outlet Inv	quare edge he ert= 309.05' / 3	CS adwall, Ke= 0.500 308.93' S= 0.0200 '/' Cc= 0.900 both interior, Flow Area= 3.14 sf
#4 #5	Device 1 Device 1	310.35' 311.00'	2.0" Vert. WQV	Orifice C= 0 breadth Broa 0 0.40 0.60 (0.600 Limited to weir flow at low heads ad-Crested Rectangular Weir 0.80 1.00

230411-01 Post Conditions	Type III 24-hr	SSF-3 WQV Rainfall=1.31"
Prepared by Sebago Technics		Printed 6/20/2025
HydroCAD® 10.20-7a s/n 00643 © 2025 HydroCAD Software S	olutions LLC	Page 2


Primary OutFlow Max=0.1 cfs @ 13.34 hrs HW=308.90' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 0.1 cfs of 16.1 cfs potential flow) 2=UD cap for bleeder (Orifice Controls 0.1 cfs @ 7.86 fps)

-4=WQV Orifice (Controls 0.0 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

3=Overflow to OCS (Controls 0.0 cfs)

		SEBAG	O TECHNIC	CS, INC.			JOB		230411-01				
			Roberts Road				SHEET NO.		1			1	
			ortland, Maine				CALCULATED BY		BJB			5/23/2	
		Tel.	(207) 200-21	100		1	FILE NAME		230411-01 WC	V.xlsx	PRNT DATE	6/20/2	2025
					UNDERDRAIN			D FILTER					
Task:		Calculate	water qual	lity volume pe	r MDEP chapt	er 500 regul	ations					-	
Defere		1 Maina	DED Chant	or EOO Costio	n + C(2)/h								
Refere	ences	1. Maine		er 500, Sectio		1.0 in ch tin							
					olume equal to			wheatchm	nt's landsson	d area"			
			the subcat	tenment s imp	ervious area p	Jus 0.4 Inch	times the	Subcatchine	ent's landscape	eu area			
		2 Maina		Aanagomont [Practices Storn	nwator Man	ual Soctio	n 7 2 2					
				-	equal to 1.0 in								
		a.			ubcatchment'			nent simpe	ervious area				
		b.			d filter bed an			t he at leas	:+				
					rvious area dr								
		c.				-			e year peak flo	w rate			
		ι.			eding the Isola			lojecteu on	е усаг реак по	Jwiate			
			Flow rates	*									
			SC-310	0.10	cfs/chamber								
			SC-740	0.10	cfs/chamber							\square	
			DC-780	0.20	cfs/chamber								
			MC-3500	0.30	cfs/chamber								
						avel laver she	ould be pro	vided with	at least one p	ort per 50	0 square-fr	eet	
				ace filter area	-	2							
Tributa	ary to Subsi	urface San	d Filter	SSF-4									
	Landscaped	d Area		27,455.00	SF								
	Impervious	Area		92,992.00	SF								
				,									
Minim	um Surface	Area for s	and filter a	and chamber s	system								
					ĺ								
	Required		(2% X Land	dscaped + 5%'	' X Impervious	.)							
						ĺ							
	Total Lands	scaped Are	a	27,455.00	SF	Area	549.1	SF					
	Total Impe	rvious Area	а	92,992.00	SF	Area	4,649.6	SF					
	•												
			Requ	ired Minimum	n Surface Area		5,198.7	SF					
										Required	No. of Insp	pectic	on Ports
				Provideo	d Surface Area		5,208.0	SF		11	Ī		
				_									
Treatm	nent Volum	e											
	Required		(0.4" X Lar	ndscaped + 1.0)" X Imperviou	is)							
	Landscaped	d Area		27,455.00	SF	Volume	915.2						
	Impervious	Area		92,992.00	SF	Volume	7,749.3						
			Т	reatment Vol	ume Required		8,664.5	CF	0.199	AF			
			F	Provided Treat	ment Volume		9,832.0	CF	WQV Elev.= 3	16.67			
Sedim	ent Pre-Tre	atment											
	Per Refere	nce 2.c abo	ove										
					-			1	1				
		One	year flow r	ate out put fr	om Hydrocad:	1.80	cfs				I		
		One	year flow r	ate out put fr	om Hydrocad:	1.80	cts						
		One	[ate out put fro ow sizing for:	om Hydrocad: SC-740	1.80 0.2	cfs cfs						
		One	[
			ISO R		SC-740								

SEBAGO TECHNICS, INC.

75 John Roberts Road, Suite 4A South Portland, Maine 04106 (207) 856-0277 FAX (207) 856-2206

JOB	230411-01		
SHEET NO.	1	OF	1
CALCULATED BY	BJB	DATE	5/23/2025
CHECKED BY	RAM		
FILE NAME	230411-01 WQC	PRINT DATE	6/20/2025

ORIFICE SIZING CALCULATION

Stormwater BMP: SSF-4
Orifice Equation $Q = CA \sqrt{(2gh)}$
Q = Rate of Discharge (cfs)
A = Orifice Area (sf)
G = Gravitational Constant (32.2 ft/s2)
h = Depth of water above the flow line (center) of the orifice (ft) C = 0.6 Orifice coefficient (usually assumed = 0.6)
C – 0.0 Office Coefficient (usually assumed – 0.0)
Average discharge rate required to drawdown the treatment volume in a
desired amount of time is:
Q = WQv
Tcf
TV = Treatment Volume (cf)
T = Target Drain Time (Hours)
cf = Conversion Factor = 3600 sec/hr
TV = 8,664 cf
t = 24 hr
Q = TV 0.10 cfs Target Rate for 24 hour discharge
surface area of filter = 5,197 SF
hmax = 1.67 ft h/2= 0.83 ft
$A = Q = \frac{Q}{C \sqrt{2gh}}$ $A = 0.023$ sf = 3.28 sq. in.
Diam = 2.05 in

Summary for Pond 22.0P: SSF-4

 Inflow Area =
 120,447 sf, 77.21% Impervious, Inflow Depth =
 0.87" for SSF-4 WQV event

 Inflow =
 2.6 cfs @
 12.08 hrs, Volume=
 8,701 cf

 Outflow =
 0.2 cfs @
 13.44 hrs, Volume=
 8,701 cf, Atten= 93%, Lag= 81.5 min

 Primary =
 0.2 cfs @
 13.44 hrs, Volume=
 8,701 cf

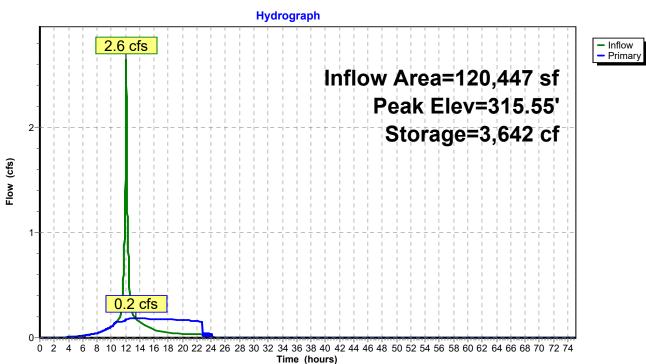
 Routed to Pond 24P : StormTech - Detention Only
 8,701 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 315.55' @ 13.44 hrs Surf.Area= 14,558 sf Storage= 3,642 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 169.5 min (948.1 - 778.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	314.67'	6,520 cf	72.75'W x 96.28'L x 3.75'H Field A
			26,267 cf Overall - 9,968 cf Embedded = 16,299 cf x 40.0% Voids
#2A	315.17'	9,968 cf	ADS_StormTech SC-800 +Cap x 195 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			195 Chambers in 15 Rows
			Cap Storage= 3.4 cf x 2 x 15 rows = 102.6 cf
#3	312.50'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			16,390 cf Overall x 0.0% Voids
		16,488 cf	Total Available Storage

Storage Group A created with Chamber Wizard


Elevatio (fee	ation Surf.Area feet) (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
312.5	50	7,553	0	0		
314.6	67	7,553	16,390	16,390		
Device	Routing	Invert	Outlet Devices			
#1	Primary	312.40'	Inlet / Outlet Inv	square edge h ert= 312.40' / 3	eadwall, Ke= 0.500 312.00' S= 0.0050 '/' Cc= 0.900 poth interior, Flow Area= 3.14 sf	
#2	Device 1	312.50'	2.0" Vert. UD c	/ert. UD cap for bleeder C= 0.600 d to weir flow at low heads		
#3	Device 1	316.67'	6.0' long x 0.5' Head (feet) 0.2 Coef. (English)	0 0.40 0.60 0		
#4	Device 3	315.37'	24.0" Round C L= 6.0' CPP, so Inlet / Outlet Inv	Overflow to O quare edge he ert= 315.37' / 3		

Primary OutFlow Max=0.2 cfs @ 13.44 hrs HW=315.55' TW=311.25' (Dynamic Tailwater)

-2=UD cap for bleeder (Orifice Controls 0.2 cfs @ 8.29 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

4=Overflow to OCS (Controls 0.0 cfs)

Pond 22.0P: SSF-4

			GO TECHN n Roberts Roa				JOB SHEET NO.		230411-01 1		OF	1	
		South	Portland, Ma	aine 04106			CALCULATED BY		BJB		DATE	5/23/	2025
		Tel	. (207) 200-	2100			FILE NAME		230411 WC	QC	PRNT DATE	6/20/	2025
Task:		Calculate	water qua	ility volume p	UNDERDRAIN er MDEP chap								
Refere		1. Maine	DEP Chap	ter 500, Secti	on 4.C.(3)(b)								
		a.	"must de	tain a runoff v	volume equal t	o 1.0 inch tii	mes						
					pervious area			subcatchme	ent's landso	caped area'	1		
		2. Maine a.		_	Practices Stor ent 5% of impo				area"				
Tributa	ary to Ur	nderdraine	d Filter	UDSF-1									
	Landsca	ped Area		24,090	SF								
	Impervi	ous Area		24,154	SF								
Minim	um Surf	ace Area											
	Require	d	(2% X Lar	ndscaped + 5%	6" X Imperviou	s)							
	Total La	ndscaped	Area	24,090	SF	Area	481.8	SF					
	Total In	npervious A	Area	24,154.00	SF	Area	1,207.7	SF					
			Requ	ired Minimum	n Surface Area		1,689.5	SF					
				Provideo	l Surface Area		3,000.0	SF					
Treatm	nent Vol	ume											
	Require	d	(0.4" X La	indscaped + 1	.0" X Impervio	us)							
	Landsca	ped Area		24,090	SF	Volume	803.0						
	Impervi	ous Area	т		SF ume Required	Volume	2,012.8 2,815.8	CF	0.065	AF			
Sedime	ent Pre-	Treatment	1	rovided Treat	ment Volume		5,951.0	CF	Elev. 313.0	00 - 314.50			
	Per Refe	erence 2, C	Chapter 7.	 1	"Pretreatmen	t devices sha	all be provi	ded to minii	nize discha	irge of sedi	ment to th	ie soi	filter"
	Annual	Sediment	Load:	55 cubic feet	per acre per y	ear of sande	ed area						
	Area to	be sanded	:	24,154	SF								
	Sedime	nt Volume		30	CF								
	Provide	d		672	CF	12	Inch Deep	Forebay	with area	of	672	sf	

SEBAGO TECHNICS, INC.

75 John Roberts Road, Suite 4A South Portland, Maine 04106 (207) 856-0277 FAX (207) 856-2206

JOB	230411-01		
SHEET NO.	1	OF	1
CALCULATED BY	BJB	DATE	5/23/2025
CHECKED BY	RAM	-	
FILE NAME	230411-01 WQV	PRINT DATE	6/20/2025

ORIFICE SIZING CALCULATION

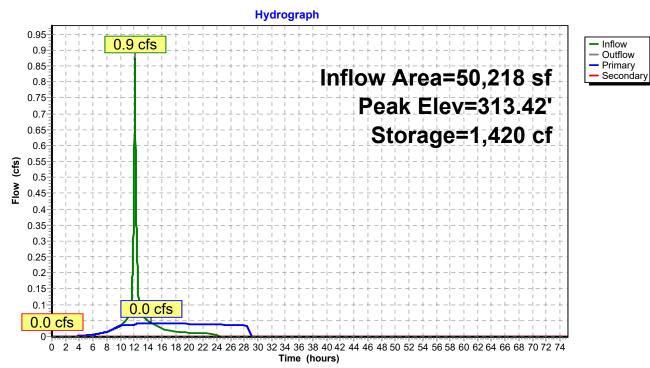
Stormwater BMP: UDSF-1
Orifice Equation $Q = CA \sqrt{2gh}$
Q = Rate of Discharge (cfs)
A = Orifice Area (sf)
G = Gravitational Constant (32.2 ft/s2)
h = Depth of water above the flow line (center) of the orifice (ft) C = 0.6 Orifice coefficient (usually assumed = 0.6)
Average discharge rate required to drawdown the treatment volume in a
desired amount of time is:
Q = WQv
Tcf
TV = Treatment Volume (cf)
T = Target Drain Time (Hours)
cf = Conversion Factor = 3600 sec/hr
TV = 5,951 cf t = 48 hr
$t = \frac{48}{hr}$
Q = TV 0.03 cfs Target Rate for 48 hour discharge
tCF
surface area of filter = 3,000 SF
hmax = 1.98 ft h/2= 0.99 ft
A = Q $A = 0.007$ sf = 1.03 sq. in.
C √(2gh)
Diam = 1.15 in

Summary for Pond 21.0P: USDF-1

Inflow Area = 50,218 sf, 56.01% Impervious, Inflow Depth = 0.69" for UDSF-1 WQV event Inflow = 0.9 cfs @ 12.08 hrs, Volume= 2.885 cf 0.0 cfs @ 14.46 hrs, Volume= 0.0 cfs @ 14.46 hrs, Volume= Outflow 2,885 cf, Atten= 95%, Lag= 142.6 min = Primary = 2,885 cf Routed to Link POA-2 : POA-2 Secondary = 0.0 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link POA-2 : POA-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 313.42' @ 14.46 hrs Surf.Area= 3,570 sf Storage= 1,420 cf Flood Elev= 317.50' Surf.Area= 6,968 sf Storage= 20,572 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 315.5 min (1,091.8 - 776.3)


Volume	Invert	Avai	I.Stoi	age	Storage Descrip	otion		
#1	310.83'		20,57	′2 cf	Custom Stage	Data (Prismatic	Listed below (Recalc)	
Elevatio	n Su	rf.Area	Void	ls	Inc.Store	Cum.Store		
(fee		(sq-ft)		6)	(cubic-feet)	(cubic-feet)		
310.8	1	3,000		.0	0			
312.9	-	3,000	-	.0	0	0		
313.0	0	3,000	100	.0	30	30		
314.0	0	4,348	100	.0	3,674	3,704		
315.0	0	5,168	100	.0	4,758	8,462		
316.0		6,042	100		5,605	14,067		
317.0	0	6,968	100	.0	6,505	20,572		
Device	Deviting	1	mt	01	at Daviasa			
Device	Routing		vert	-	et Devices			
#1	Primary	310	.73'		" Round Outlet			
					2.0' CPP, proje		III, Ke= 0.900 S= 0.0052 '/' Cc= 0.900	
#2				n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 1.2" Vert. UD Orifice C= 0.600 Limited to weir flow at low heads				
#2 #3	Device 1 Device 2		310.83' 0.500 in/hr Infiltration over Sur					
#3 #4	Device 2 Device 1		.50'		W x 3.0" H Vert			
π -	Device 1	014	.00	-	ted to weir flow a		0.000	
#5	Device 1	316	5.00'				X 29.00 C= 0.600	
				-	ted to weir flow a			
#6	Secondary	316	5.50'				ested Rectangular Weir	
							00 1.20 1.40 1.60 1.80 2.00	
				2.50) 3.00 [´] 3.50 4.00	4.50 5.00 5.50)	
							2.68 2.68 2.67 2.64 2.64	
				2.64	2.65 2.64 2.65	5 2.65 2.66 2.67	7 2.69	

Primary OutFlow Max=0.0 cfs @ 14.46 hrs HW=313.42' TW=0.00' (Dynamic Tailwater) 1=Outlet Pipe (Passes 0.0 cfs of 4.3 cfs potential flow) **2=UD Orifice** (Passes 0.0 cfs of 0.1 cfs potential flow) **3=Infiltration** (Exfiltration Controls 0.0 cfs)

4=WQV Orifice (Controls 0.0 cfs)

5=Beehive Grate (Controls 0.0 cfs)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=310.83' TW=0.00' (Dynamic Tailwater) **G=Broad-Crested Rectangular Weir**(Controls 0.0 cfs)

Pond 21.0P: USDF-1

Project Name:	Franklin Drive Multi-Family Development			
Lake Watershed:	Sebago Lake			
Town: Windham,	ME			
Standard Calcula	tions			
	Watershed per acre phosphorus budget (Appendix C)	PAPB	0.053	lbs P/acre/yea
	Total acreage of development parcel:	ТА	38.6	acres
	NWI wetland acreage:	WA	13.4	acres
	Steep slope acreage:	SA	2.5	acres
	Project acreage: A = TA - (WA+ SA)	Α	22.69	acres
Project Phosphor	rus Budget: PPB = P x A	PPB	1.20257	lbs P/year
Small Watershed	Adjustment			
	 s greater than the threshold acreage for the small watershed the pendix C), calculate an alternative PPB using the analysis below 			
If Project Acreage (A info in the table in Ap Standard Calculatior	 s greater than the threshold acreage for the small watershed the pendix C), calculate an alternative PPB using the analysis below 			
If Project Acreage (A info in the table in Ap Standard Calculatior	 a) is greater than the threshold acreage for the small watershed the pendix C), calculate an alternative PPB using the analysis below a PPB. 	v and use th		ess than the the
If Project Acreage (A info in the table in Ap Standard Calculatior Small Watershed T Project acreage:	 a) is greater than the threshold acreage for the small watershed the pendix C), calculate an alternative PPB using the analysis below a PPB. 	v and use th		ess than the the
f Project Acreage (A nfo in the table in Ap Standard Calculatior Small Watershed T Project acreage: Allowable increase (Appendix C):	a) is greater than the threshold acreage for the small watershed the ppendix C), calculate an alternative PPB using the analysis below a PPB. Threshold (Appendix C):	SWT		acres acres
f Project Acreage (A nfo in the table in Ap Standard Calculatior Small Watershed T Project acreage: Allowable increase (Appendix C): Area available for o	a) is greater than the threshold acreage for the small watershed the popendix C), calculate an alternative PPB using the analysis below in PPB. Threshold (Appendix C): in town's share of annual phosphorus load to lake development (Appendix C):	SWT A FC		acres acres bs P/year
f Project Acreage (A nfo in the table in Ap Standard Calculation Small Watershed T Project acreage: Allowable increase (Appendix C): Area available for o Ratio of A to AAD	a) is greater than the threshold acreage for the small watershed the popendix C), calculate an alternative PPB using the analysis below in PPB. Threshold (Appendix C): in town's share of annual phosphorus load to lake development (Appendix C): (R=A/AAD)	SWT A FC AAD		acres acres bs P/year
If Project Acreage (A nfo in the table in Ap Standard Calculation Small Watershed T Project acreage: Allowable increase (Appendix C): Area available for o Ratio of A to AAD Project Phosphor	a) is greater than the threshold acreage for the small watershed the popendix C), calculate an alternative PPB using the analysis below in PPB. Threshold (Appendix C): in town's share of annual phosphorus load to lake development (Appendix C): (R=A/AAD)	SWT A FC AAD		acres acres acres Ibs P/year

Pre-PPE and Post-PPE Calculations Calculate phosphorus export from development for before and after treatment Use as many sheets as needed for each development type (commercial, roads, residential lots, etc.) Worksheet 2

Sheet #: 2 Development Type: Residential Project name: Franklin Drive Multi-Family Development

Land Surface Type or Lot #(s) with description	Acres or # of lots	Export Coefficient from Table 3.1 Table 3.2	Pre- treatment Algal Av. P Export (Ibs P/year)	T reatment Factor for BMP(s) from Chapter 6	Post- treatment Algal Av. P Export (Ibs P/year)	Description of BMPs	CALCULATED TF	MIN TF
Landscape (HSG A)	0.37	0.20	0.07	0.38	0.03			
Roads/Driveways (HSG A)	1.07	1.75	1.87	0.38	0.71			
Parking (HSG A)	0.95	1.25	1.18	0.38	0.45	Subsurface sand Filter 1 (SSF-1)	0.38	0.25
Sidewalks (HSG A)	0.14	0.50	0.07	0.38	0.03			
Roof (HSG A)	0.50	0.50	0.25	0.38	0.09			
Landscape (HSG A)	0.19	0.20	0.04	0.30	0.01			
Roads/Driveways (HSG A)	0.46	1.75	0.81	0.30	0.24			
Parking (HSG A)	0.41	1.25	0.51	0.30	0.15	Subsurface sand Filter 2 (SSF-2)	0.30	0.25
Sidewalks (HSG A)	0.06	0.50	0.03	0.30	0.01			
Roof (HSG A)	0.41	0.50	0.21	0.30	0.06			
Landscape (HSG A)	0.22	0.20	0.04	0.25	0.01			
Roads/Driveways (HSG A)	0.40	1.75	0.70	0.25	0.17			
Parking (HSG A)	0.23	1.25	0.29	0.25	0.07	Subsurface sand Filter 3 (SSF-3)	0.17	0.25
Sidewalk (HSG A)	0.07	0.50	0.04	0.25	0.01			
Roof (HSG A)	0.28	0.50	0.14	0.25	0.04			
Landscape (HSG A)	0.51	0.20	0.10	0.25	0.03			
Roads/Driveways (HSG A)	0.33	1.75	0.58	0.25	0.15			
Parking (HSG A)	60.0	1.25	0.11	0.25	0.03	Underdrained Soil Filter 1 (UDSF-1)	0.19	0.25
Sidewalk (HSG A)	0.13	0.50	0.07	0.25	0.02			
Roof (HSG A)	0.09	0.50	0.05	0.25	0.01			
Landscape (HSG A)	0.63	0.20	0.13	0.35	0.04			
Roads/Driveways (HSG A)	1.01	1.75	1.76	0.35	0.62			
Parking (HSG A)	0.55	1.25	0.69	0.35	0.24	Subsurface Sand Filter 4 (SSF-4)	0.35	0.25
Sidewalks (HSG A)	0.13	0.50	0.06	0.35	0.02			
Roof (HSG A)	0.45	0.50	0.22	0.35	0.08			
Landscape (HSG A)	1.03	0.20	0.21	1.00	0.21			
Roads/Driveways (HSG A)	00.0	1.75	0.00	1.00	0.00	- Intreated	100	÷
Parking (HSG A)	00.0	1.25	0.00	1.00	0.00		000	-
Sidewalk (HSG A)	00.0	0.50	0.00	1.00	00.00			
		Total Pre-PPE (Ibs P/year)	10.22	Total PostPPE (Ibs P/year)	3.52			

"MIN TREATMENT FACTOR (TF) USED WHEN CALCULATED TF WAS LESS THAN MIN TF, PER VOLUME II - PHOSPHORUS CONTROL MANUAL "LOW EXPORT OPTION COEFFICIENTS FROM TABLE 3.1 USED DUE TO SURFACES BEING STABILIZED WITH PAVEMENT OR VEGETATION & PHOSPHORUS RESTRICTION ON SITE

Appendix D: Worksheet 3 - Mitigation credit

Project name: Franklin Drive Multi-Family Development Development type: Residential

Sheet # ____3_

g source is being eliminated
being
ce is
sourc
it when a pre-existing
a pre-e
when
n credit whe
Mitigation
Mitic

	ŀ)							F
Mitigation Source Area Land Use	Acres Coefficient (Ibs P/acre/year)	Modifier	Pre- treatment Historical P Export (lbs P/year)	Treatment Factor for Historical BMP(s) (1.0 if no BMPs)	Historical P Export (lbs P/year)		Mitigation Credit (lbs P/year)	Comments	
		0.5	0	1	0		0		,,
		0.5	0	1	0		0		
		0.5	0	1	0		0		
			Total s	Total source elimination mitiagion credit (SEC)	n mitiagion cr	edit (SEC)	0	lbs P/year	

Mitigation credit when a pre-existing source is treated by a new BMP

I						1
	Comments				lbs P/year	
	Mitigation Credit (Ibs P/year)	0	0	0	0	
	Treatment Factor for New BMP(s) ^{Chapter 6}				(STC)	
		1 -	<u>۲</u>	1	edit	
	Historical P Export (lbs P/year)	0	0	0	t mitiagion cr	
u by a new biv	Treatment Factor for Historical BMP(s) (1.0 ff no BMPs)	L	1	-	Total source treatment mitiagion credit (STC)	
ce is treated	Pre- treatment Historical P Export (lbs P/year)	0	0	0	Total	
ung sour	Modifier	0.5	0.5	0.5		
a pre-exist	Export Coefficient (lbs P/acre/year)					
r wnen	Acres					
	Mitigation Source Area Land Use					

lbs P/year

0

TOTAL MITIGATION CREDIT (SEC + STC)

WORKSHEET 4 - PROJECT PHOSPHORUS EXPORT SUMMARY

Summarizing the project's algal available phosphorus export (PPE)

Project Name: Franklin Drive Multi-Family Development

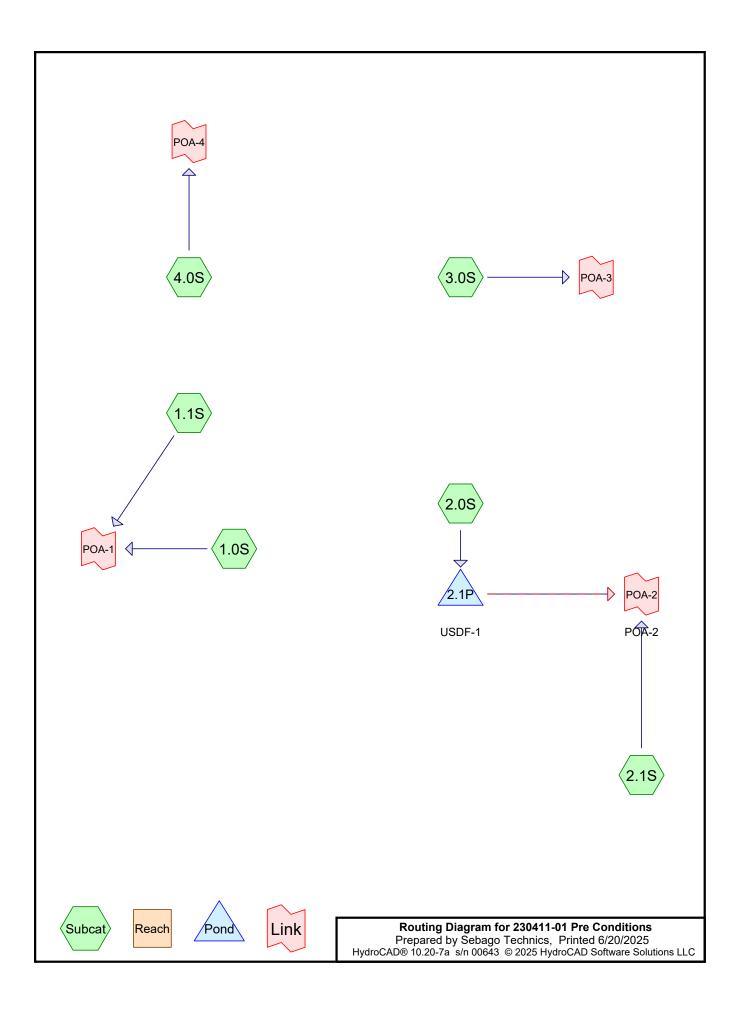
Project Phosphorus Budget - Worksheet 1		1.20	lbs P/year
Total Pre-Treatment Phosphorus Export - Worksheet 2	Pre-PPE	10.22	lbs P/year
Total Post-Treatment Phosphorus Export - Worksheet 2	Post-PPE	3.52	lbs P/year
Total Phosphorus Mitigation Credit - Worksheet 3	ТМС	0.00	lbs P/year
Project Phosphorus Export (Post-PPE - TMC)	PPE	3.52	lbs P/year

s the Project Phosphorus Export ≤ the Project P	hosphorus Budget? (PPE≤PPB)
---	-----------------------------

If YES , PPE is less than or equal to PPB and the project meets its phosphorus budget . If NO , PPE is greater than PPB, more reduction in phosphorus export is required or the payment of a compensation fee may be an option	NO
The amount of phosphorus that needs further treatment or compensation	2.32 lbs P/year

Has Project Phosphorus Export been sufficiently reduced?

Is (Pre-PPE - Post-PPE)/Pre-PPE greater than 0.60?


If YES , in some watersheds the compensation fee is an available option. If NO , more treatment must be provided. PPE must be further reduced.	YES
The post-treatment phosphorus export must be less than 40% of the pre- treatment export (Post-PPE < 0.4*Pre-PPE)	65.53 %

If the project is located in a watershed that is eligible for a compensation fee (or is a residential subdivision with buffers), a compensation fee may be appropriate as follows:

If Project Export has been reduced by greater than 60% and less than 75%, \$25,000 per pound minus \$833 per 1% Percent Export	\$47,343
If Project Export has been reduced by greater than 75%, \$12,500 per pound minus \$500 per 1% Project Export	

Appendix 2A

Existing Conditions HydroCAD Summary

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
21,215	39	>75% Grass cover, Good, HSG A (1.0S, 2.0S, 2.1S)
13,783	96	Gravel surface, HSG A (1.0S, 1.1S, 3.0S)
136,866	30	Meadow, non-grazed, HSG A (1.0S, 2.1S)
61,359	98	Paved parking, HSG A (1.0S, 2.0S, 2.1S)
757,694	30	Woods, Good, HSG A (1.0S, 1.1S, 2.1S, 3.0S, 4.0S)
990,917	35	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
990,917	HSG A	1.0S, 1.1S, 2.0S, 2.1S, 3.0S, 4.0S
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
990,917		TOTAL AREA

Subcatchment1.0S:	Runoff Area=276,563 sf 4.34% Impervious Runoff Depth=0.17" Flow Length=490' Tc=23.4 min CN=WQ Runoff=0.8 cfs 4,018 cf
Subcatchment1.1S:	Runoff Area=93,625 sf 0.00% Impervious Runoff Depth=0.10" Flow Length=377' Tc=18.6 min CN=WQ Runoff=0.2 cfs 803 cf
Subcatchment2.0S:	Runoff Area=32,969 sf 64.21% Impervious Runoff Depth=1.84" Flow Length=134' Tc=6.0 min CN=WQ Runoff=1.5 cfs 5,059 cf
Subcatchment2.1S:	Runoff Area=326,379 sf 8.64% Impervious Runoff Depth=0.25" Flow Length=441' Tc=17.6 min CN=WQ Runoff=1.4 cfs 6,737 cf
Subcatchment3.0S:	Runoff Area=221,586 sf 0.00% Impervious Runoff Depth=0.06" Flow Length=526' Tc=17.0 min CN=WQ Runoff=0.2 cfs 1,091 cf
Subcatchment4.0S:	Runoff Area=39,795 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=153' Tc=10.3 min CN=30 Runoff=0.0 cfs 0 cf
Pond 2.1P: USDF-1	Peak Elev=313.81' Storage=2,909 cf Inflow=1.5 cfs 5,059 cf Primary=0.0 cfs 5,060 cf Secondary=0.0 cfs 0 cf Outflow=0.0 cfs 5,060 cf
Link POA-1:	Inflow=0.9 cfs 4,821 cf Primary=0.9 cfs 4,821 cf
Link POA-2: POA-2	Inflow=1.4 cfs 11,797 cf Primary=1.4 cfs 11,797 cf
Link POA-3:	Inflow=0.2 cfs 1,091 cf Primary=0.2 cfs 1,091 cf
Link POA-4:	Inflow=0.0 cfs 0 cf Primary=0.0 cfs 0 cf
Tatal Durg off Array	- 000 047 of Dumoff Volume - 47 700 of Auguste Dumoff Double - 0.04

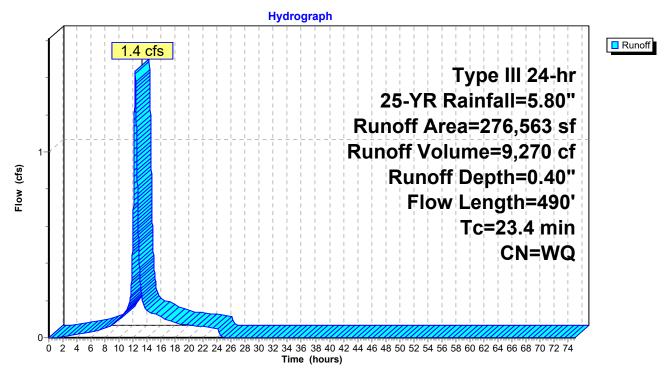
Total Runoff Area = 990,917 sf Runoff Volume = 17,709 cf Average Runoff Depth = 0.21" 93.81% Pervious = 929,558 sf 6.19% Impervious = 61,359 sf

Subcatchment1.0S:	Runoff Area=276,563 sf 4.34% Impervious Runoff Depth=0.27" Flow Length=490' Tc=23.4 min CN=WQ Runoff=1.1 cfs 6,256 cf
Subcatchment1.1S:	Runoff Area=93,625 sf 0.00% Impervious Runoff Depth=0.16" Flow Length=377' Tc=18.6 min CN=WQ Runoff=0.3 cfs 1,253 cf
Subcatchment2.0S:	Runoff Area=32,969 sf 64.21% Impervious Runoff Depth=2.85" Flow Length=134' Tc=6.0 min CN=WQ Runoff=2.2 cfs 7,823 cf
Subcatchment2.1S:	Runoff Area=326,379 sf 8.64% Impervious Runoff Depth=0.38" Flow Length=441' Tc=17.6 min CN=WQ Runoff=2.1 cfs 10,253 cf
Subcatchment3.0S:	Runoff Area=221,586 sf 0.00% Impervious Runoff Depth=0.09" Flow Length=526' Tc=17.0 min CN=WQ Runoff=0.4 cfs 1,702 cf
Subcatchment4.0S:	Runoff Area=39,795 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=153' Tc=10.3 min CN=30 Runoff=0.0 cfs 0 cf
Pond 2.1P: USDF-1	Peak Elev=314.30' Storage=5,033 cf Inflow=2.2 cfs 7,823 cf Primary=0.0 cfs 7,823 cf Secondary=0.0 cfs 0 cf Outflow=0.0 cfs 7,823 cf
Link POA-1:	Inflow=1.4 cfs 7,509 cf Primary=1.4 cfs 7,509 cf
Link POA-2: POA-2	Inflow=2.1 cfs 18,076 cf Primary=2.1 cfs 18,076 cf
Link POA-3:	Inflow=0.4 cfs 1,702 cf Primary=0.4 cfs 1,702 cf
Link POA-4:	Inflow=0.0 cfs 0 cf Primary=0.0 cfs 0 cf

Total Runoff Area = 990,917 sf Runoff Volume = 27,287 cf Average Runoff Depth = 0.33"93.81% Pervious = 929,558 sf6.19% Impervious = 61,359 sf

Subcatchment1.0S:	Runoff Area=276,563 sf 4.34% Impervious Runoff Depth=0.40" Flow Length=490' Tc=23.4 min CN=WQ Runoff=1.4 cfs 9,270 cf
Subcatchment1.1S:	Runoff Area=93,625 sf 0.00% Impervious Runoff Depth=0.26" Flow Length=377' Tc=18.6 min CN=WQ Runoff=0.3 cfs 2,008 cf
Subcatchment2.0S:	Runoff Area=32,969 sf 64.21% Impervious Runoff Depth=3.71" Flow Length=134' Tc=6.0 min CN=WQ Runoff=2.8 cfs 10,196 cf
Subcatchment2.1S:	Runoff Area=326,379 sf 8.64% Impervious Runoff Depth=0.53" Flow Length=441' Tc=17.6 min CN=WQ Runoff=2.6 cfs 14,375 cf
Subcatchment3.0S:	Runoff Area=221,586 sf 0.00% Impervious Runoff Depth=0.17" Flow Length=526' Tc=17.0 min CN=WQ Runoff=0.5 cfs 3,141 cf
Subcatchment4.0S:	Runoff Area=39,795 sf 0.00% Impervious Runoff Depth=0.05" Flow Length=153' Tc=10.3 min CN=30 Runoff=0.0 cfs 174 cf
Pond 2.1P: USDF-1	Peak Elev=314.55' Storage=6,230 cf Inflow=2.8 cfs 10,196 cf Primary=0.1 cfs 10,196 cf Secondary=0.0 cfs 0 cf Outflow=0.1 cfs 10,196 cf
Link POA-1:	Inflow=1.8 cfs 11,277 cf Primary=1.8 cfs 11,277 cf
Link POA-2: POA-2	Inflow=2.7 cfs 24,571 cf Primary=2.7 cfs 24,571 cf
Link POA-3:	Inflow=0.5 cfs 3,141 cf Primary=0.5 cfs 3,141 cf
Link POA-4:	Inflow=0.0 cfs 174 cf Primary=0.0 cfs 174 cf

Total Runoff Area = 990,917 sf Runoff Volume = 39,163 cf Average Runoff Depth = 0.47" 93.81% Pervious = 929,558 sf 6.19% Impervious = 61,359 sf

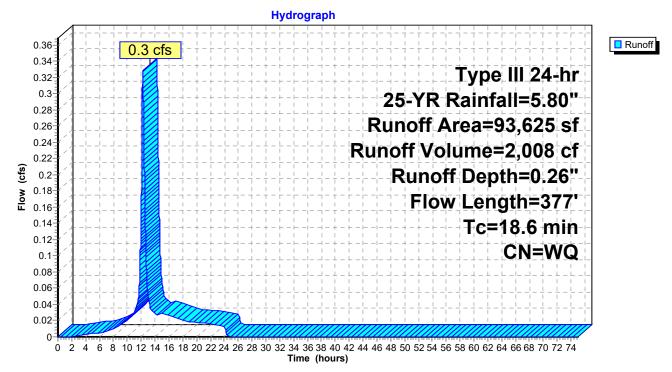

Summary for Subcatchment 1.0S:

Runoff = 1.4 cfs @ 12.30 hrs, Volume= 9,270 cf, Depth= 0.40" Routed to Link POA-1 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

A	rea (sf)	CN D	escription					
	12,000	98 P	Paved parking, HSG A					
	5,208	96 G	Fravel surfa	ace, HSG A	N Contraction of the second			
	9,266	39 >	75% Gras	s cover, Go	ood, HSG A			
1	18,189	30 V	Voods, Go	od, HSG A				
1	31,900	<u> 30 N</u>	leadow, no	on-grazed,	HSG A			
2	76,563	V	Veighted A	verage				
2	64,563	9	5.66% Per	rvious Area				
	12,000	4	.34% Impe	ervious Area	a			
_		-		-				
Tc	Length	Slope	Velocity	Capacity	Description			
					Becchpiter			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
					Sheet Flow, A-B			
(min)	(feet)	(ft/ft)	(ft/sec) 0.08		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30"			
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C			
(min) 10.3 12.8	(feet) 50	(ft/ft) 0.0300 0.0100	(ft/sec) 0.08		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
<u>(min)</u> 10.3	(feet) 50	(ft/ft) 0.0300	(ft/sec) 0.08		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D			
(min) 10.3 12.8	(feet) 50 385	(ft/ft) 0.0300 0.0100	(ft/sec) 0.08 0.50		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
(min) 10.3 12.8	(feet) 50 385	(ft/ft) 0.0300 0.0100	(ft/sec) 0.08 0.50		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D			

Subcatchment 1.0S:

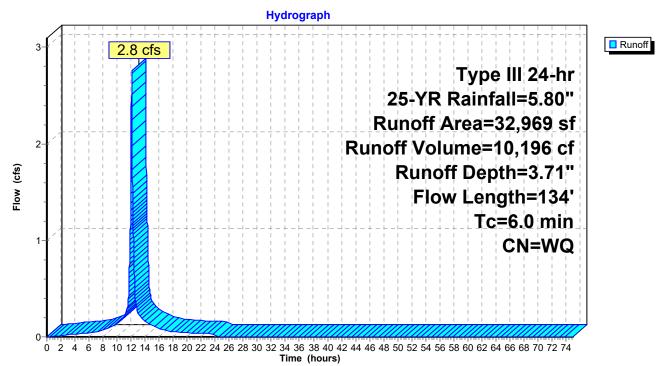

Summary for Subcatchment 1.1S:

Runoff = 0.3 cfs @ 12.25 hrs, Volume= 2,008 cf, Depth= 0.26" Routed to Link POA-1 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

A	rea (sf)	CN D	Description		
	3,635	96 G	Gravel surfa	ace, HSG A	N Contraction of the second seco
	89,990	30 V	Voods, Go	od, HSG A	
	93,625	V	Veighted A	verage	
	93,625	1	00.00% P	ervious Are	а
_				-	
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.6	44	0.0280	0.08		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.30"
2.8	150	0.0330	0.91		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
6.2	183	0.0050	0.49		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
18.6	377	Total			

Subcatchment 1.1S:


Summary for Subcatchment 2.0S:

Runoff = 2.8 cfs @ 12.08 hrs, Volume= 10,196 cf, Depth= 3.71" Routed to Pond 2.1P : USDF-1

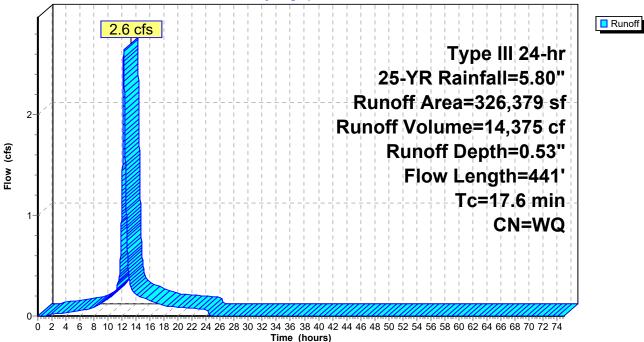
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

	Area (sf)	CN D	CN Description									
	21,170	98 P										
	11,799	39 >										
	32,969	V	Veighted A	verage								
	11,799	3	5.79% Per	vious Area								
	21,170	6	4.21% Imp	pervious Ar	ea							
To	5	Slope	Velocity	Capacity	Description							
(min)) (feet)	(ft/ft)	(ft/sec)	(cfs)		_						
0.3	8 16	0.0200	0.97		Sheet Flow, A-B							
	Smooth surfaces n= 0.011 P2= 3.30"											
0.6	5 118	0.0280	0.0280 3.40 Shallow Concentrated Flow, B-C									
	Paved Kv= 20.3 fps											
5.1					Direct Entry, Direct Entry	_						
6.0) 134	Total										

Subcatchment 2.0S:

Summary for Subcatchment 2.1S:

Runoff = 2.6 cfs @ 12.22 hrs, Volume= 14,375 cf, Depth= 0.53" Routed to Link POA-2 : POA-2

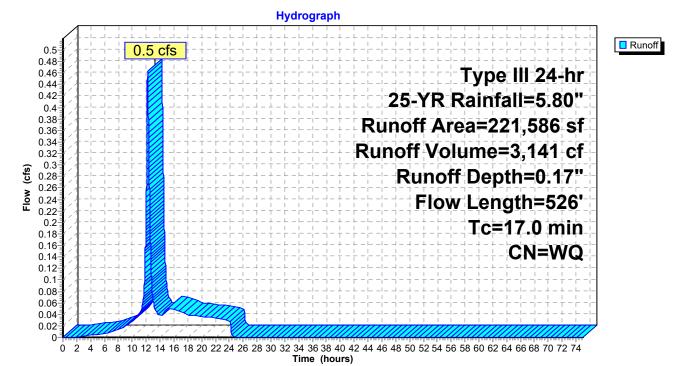

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN E	N Description						
		28,189	98 F	Paved parking, HSG A						
	2	93,074	30 V	Noods, Good, HSG A						
		150		>75% Grass cover, Good, HSG A						
_		4,966	30 N	leadow, no	on-grazed,	HSG A				
		26,379		Veighted A						
		98,190	-		vious Area					
		28,189	8	.64% Impe	ervious Are	а				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.8	57	0.0440	0.10		Sheet Flow, A-B				
						Woods: Light underbrush n= 0.400 P2= 3.30"				
	6.8	266	0.0170	0.65		Shallow Concentrated Flow, B-C				
	4.0	440	0 4700	0.00		Woodland Kv= 5.0 fps				
	1.0	118	0.1700	2.06		Shallow Concentrated Flow, C-D				
_	17.6		Tatal			Woodland Kv= 5.0 fps				

17.6 441 Total

Subcatchment 2.1S:

Hydrograph

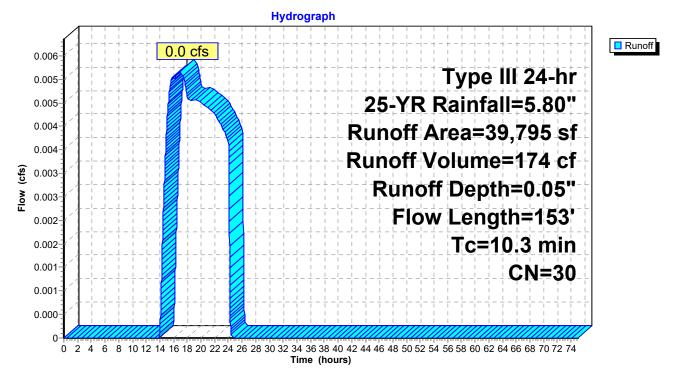

Summary for Subcatchment 3.0S:

Runoff = 0.5 cfs @ 12.22 hrs, Volume= 3,141 cf, Depth= 0.17" Routed to Link POA-3 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

	Ar	rea (sf)	CN E	escription		
4,940 96 Gravel surface, HSG A					ace, HSG A	N
	2	16,646	30 V	Voods, Go	od, HSG A	
	2	21,586	V	Veighted A	verage	
	2	21,586	1	00.00% Pe	ervious Are	a
_	Tc	Length	Slope	Velocity	Capacity	Description
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1	1.0	52	0.0280	0.08		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.30"
	6.0	474	0.0700	1.32		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
1	7.0	526	Total			

Subcatchment 3.0S:


Summary for Subcatchment 4.0S:

Runoff = 0.0 cfs @ 16.88 hrs, Volume= 174 cf, Depth= 0.05" Routed to Link POA-4 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN Description							
		39,795 30 Woods, Good, HSG A								
		39,795	1	00.00% P	ervious Are	a				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	9.6	44	0.0280	0.08		Sheet Flow, A-B				
_	0.7	109	0.2900	2.69		Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps				
	10.3	153	Total							

Subcatchment 4.0S:

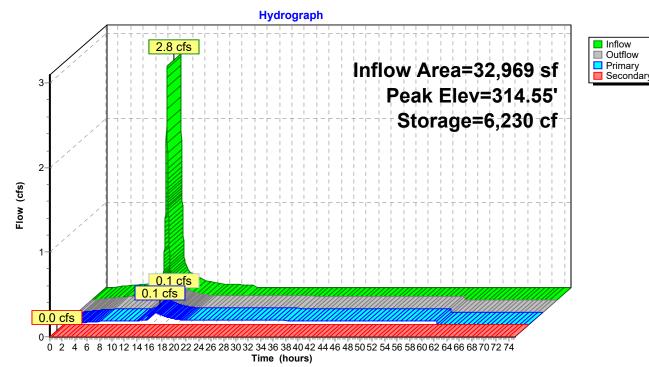
Summary for Pond 2.1P: USDF-1

32,969 sf, 64.21% Impervious, Inflow Depth = 3.71" for 25-YR event Inflow Area = Inflow = 2.8 cfs @ 12.08 hrs, Volume= 10.196 cf 0.1 cfs @ 14.38 hrs, Volume= 0.1 cfs @ 14.38 hrs, Volume= Outflow 10,196 cf, Atten= 95%, Lag= 138.0 min = Primary = 10,196 cf Routed to Link POA-2 : POA-2 Secondary = 0.0 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link POA-2 : POA-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 314.55' @ 14.38 hrs Surf.Area= 4,801 sf Storage= 6,230 cf Flood Elev= 317.50' Surf.Area= 6,968 sf Storage= 20,572 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1,026.5 min (1,780.5 - 754.0)

Volume	Invert	Avai	il.Stor	age	Storage Descrip	tion		
#1	310.83'	310.83'		2 cf	Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevatio	on Su	Surf.Area Void		ls Inc.Store		Cum.Store		
(fee	t)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)		
310.8	33	3,000	0.	0	0	0		
312.9		3,000	0.	0	0	0		
313.0	00	3,000	100.		30	30		
314.0	00	4,348	100.	0	3,674	3,704		
315.0	00	5,168	100.	0	4,758	8,462		
316.0		6,042	100.		5,605	14,067		
317.0	00	6,968	100.	0	6,505	20,572		
Device	Routing	In	vert	Outle	et Devices			
#1	Primary	310).73'	12.0	" Round Outlet	Pipe		
	-			L= 82.0' CPP, projecting, no headwall, Ke= 0.900				
			Inle		/ Outlet Invert= 3	10.73' / 310.30'	S= 0.0052 '/' Cc= 0.900	
							rior, Flow Area= 0.79 sf	
#2	Device 1						ited to weir flow at low heads	
#3	Device 2						area Phase-In= 0.01'	
#4	Device 1	314	.50'	-			X 29.00 C= 0.600	
	o 1	0.4.0	501		ted to weir flow at			
#5 Secondary 3		316	6.50'				sted Rectangular Weir	
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1. 2.50 3.00 3.50 4.00 4.50 5.00 5.50								
							2.68 2.68 2.67 2.64 2.64	
					2.65 2.64 2.65			
				2.04	2.00 2.04 2.00	2.00 2.00 2.01	2.00	

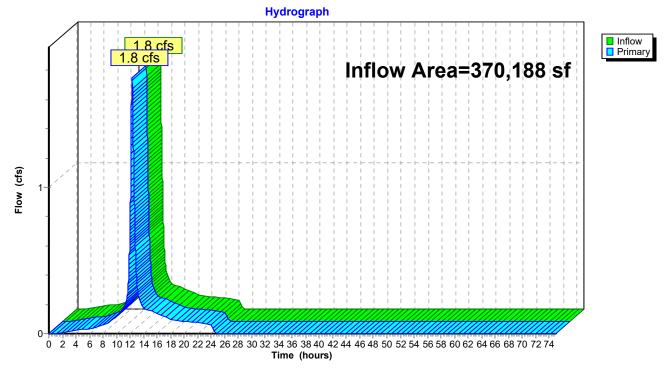

Primary OutFlow Max=0.1 cfs @ 14.38 hrs HW=314.55' TW=0.00' (Dynamic Tailwater)

1=Outlet Pipe (Passes 0.1 cfs of 5.4 cfs potential flow)

2=UD Orifice (Orifice Controls 0.1 cfs @ 9.24 fps) **3=Infiltration** (Passes 0.1 cfs of 0.3 cfs potential flow)

4=Beehive Grate (Orifice Controls 0.1 cfs @ 0.73 fps)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=310.83' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

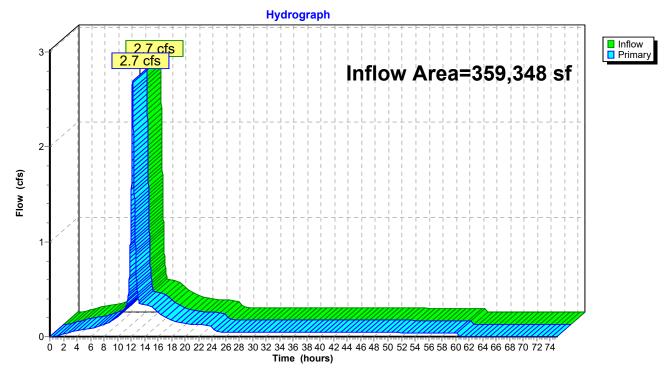

Pond 2.1P: USDF-1

Summary for Link POA-1:

Inflow Area =	370,188 sf,	3.24% Impervious,	Inflow Depth = 0.37"	for 25-YR event
Inflow =	1.8 cfs @ 1	12.30 hrs, Volume=	11,277 cf	
Primary =	1.8 cfs @	12.30 hrs, Volume=	11,277 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-1:

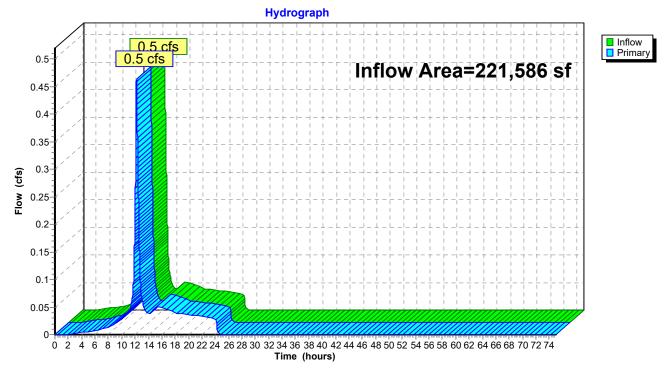


Summary for Link POA-2: POA-2

Inflow Area =	359,348 sf,	13.74% Impervious,	Inflow Depth = 0.82"	for 25-YR event
Inflow =	2.7 cfs @	12.22 hrs, Volume=	24,571 cf	
Primary =	2.7 cfs @	12.22 hrs, Volume=	24,571 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

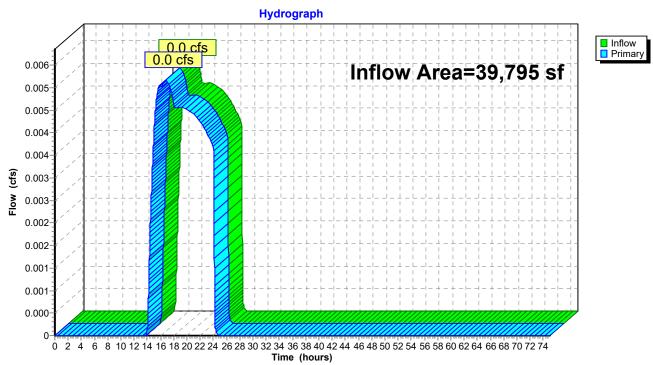
Link POA-2: POA-2



Summary for Link POA-3:

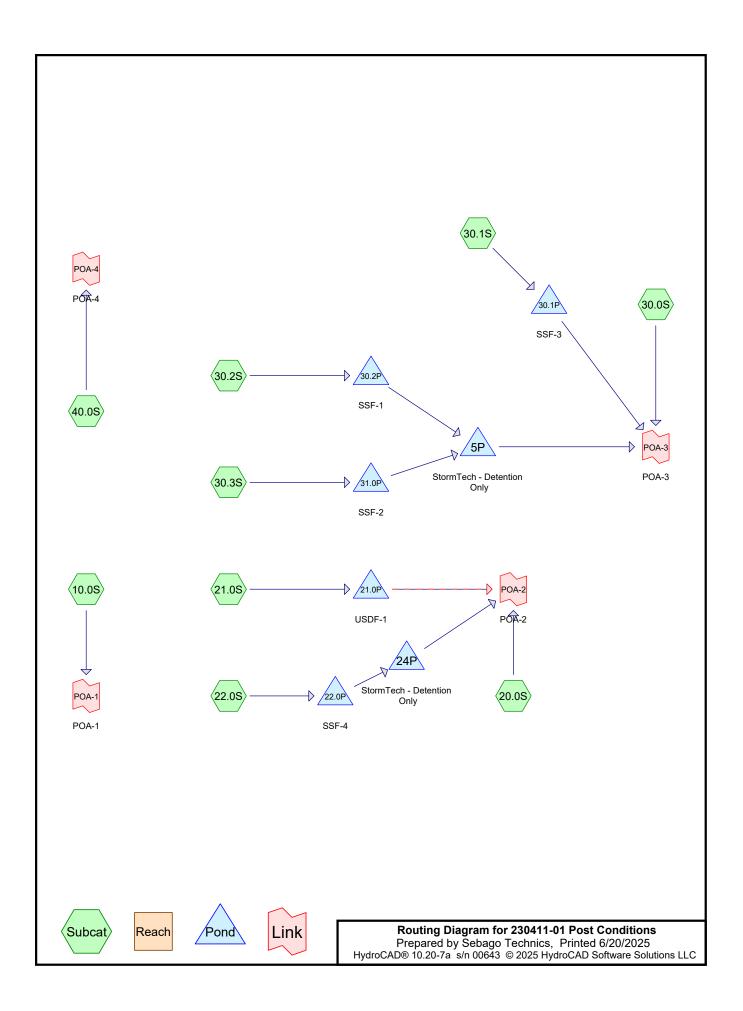
Inflow Area =	221,586 sf,	0.00% Impervious,	Inflow Depth = 0.17"	for 25-YR event
Inflow =	0.5 cfs @	12.22 hrs, Volume=	3,141 cf	
Primary =	0.5 cfs @	12.22 hrs, Volume=	3,141 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs


Link POA-3:

Summary for Link POA-4:

Inflow Area =	39,795 sf,	0.00% Impervious,	Inflow Depth = 0.05"	for 25-YR event
Inflow =	0.0 cfs @	16.88 hrs, Volume=	174 cf	
Primary =	0.0 cfs @	16.88 hrs, Volume=	174 cf, Atte	n= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-4:

Appendix 2B

Proposed Conditions HydroCAD Summary

230411-01 Post Conditions

Prepared by Sebago Technics HydroCAD® 10.20-7a s/n 00643 © 2025 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
137,682	39	>75% Grass cover, Good, HSG A (10.0S, 20.0S, 21.0S, 22.0S, 30.0S, 30.1S,
		30.2S, 30.3S, 40.0S)
5,174	96	Gravel surface, HSG A (10.0S, 30.0S)
169,382	30	Meadow, non-grazed, HSG A (10.0S, 20.0S)
302,969	98	Paved parking, HSG A (10.0S, 20.0S, 21.0S, 22.0S, 30.1S, 30.2S, 30.3S)
75,490	98	Roofs, HSG A (21.0S, 22.0S, 30.1S, 30.2S, 30.3S)
300,220	30	Woods, Good, HSG A (10.0S, 20.0S, 30.0S, 40.0S)
990,917	58	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
990,917	HSG A	10.0S, 20.0S, 21.0S, 22.0S, 30.0S, 30.1S, 30.2S, 30.3S, 40.0S
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
990,917		TOTAL AREA

Subcatchment10.0S:	Runoff Area=207,220 sf 5.79% Impervious Runoff Depth=0.22" Flow Length=490' Tc=23.4 min CN=WQ Runoff=0.7 cfs 3,730 cf
Subcatchment20.0S:	Runoff Area=227,432 sf 12.39% Impervious Runoff Depth=0.36" Flow Length=441' Tc=17.6 min CN=WQ Runoff=1.4 cfs 6,737 cf
Subcatchment21.0S:	Runoff Area=50,218 sf 56.01% Impervious Runoff Depth=1.61" Flow Length=134' Tc=6.0 min CN=WQ Runoff=1.9 cfs 6,722 cf
Subcatchment22.0S:	Runoff Area=120,447 sf 77.21% Impervious Runoff Depth=2.21" Flow Length=150' Tc=6.0 min CN=WQ Runoff=6.4 cfs 22,224 cf
Subcatchment30.0S:	Runoff Area=106,675 sf 0.00% Impervious Runoff Depth=0.03" Flow Length=515' Tc=21.2 min CN=WQ Runoff=0.1 cfs 281 cf
Subcatchment30.1S:	Runoff Area=52,105 sf 81.85% Impervious Runoff Depth=2.35" Flow Length=182' Tc=6.0 min CN=WQ Runoff=2.9 cfs 10,193 cf
Subcatchment30.2S:	Runoff Area=131,790 sf 87.60% Impervious Runoff Depth=2.51" Flow Length=100' Slope=0.0220 '/' Tc=6.0 min CN=WQ Runoff=8.0 cfs 27,591 cf
Subcatchment30.3S:	Runoff Area=67,415 sf 87.60% Impervious Runoff Depth=2.51" Flow Length=105' Slope=0.0204 '/' Tc=6.0 min CN=WQ Runoff=4.1 cfs 14,113 cf
Subcatchment40.0S:	Runoff Area=27,615 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=75' Slope=0.5000 '/' Tc=6.0 min CN=WQ Runoff=0.0 cfs 0 cf
Pond 5P: StormTech - D	Petention OnlyPeak Elev=311.29' Storage=39 cfInflow=2.3 cfs41,708 cfDiscarded=2.3 cfs41,708 cfPrimary=0.0 cfs0 cfOutflow=2.3 cfs41,708 cf
Pond 21.0P: USDF-1	Peak Elev=314.12' Storage=4,215 cf Inflow=1.9 cfs 6,722 cf Primary=0.1 cfs 6,722 cf Secondary=0.0 cfs 0 cf Outflow=0.1 cfs 6,722 cf
Pond 22.0P: SSF-4	Peak Elev=316.80' Storage=10,484 cf Inflow=6.4 cfs 22,224 cf Outflow=1.0 cfs 22,224 cf
Pond 24P: StormTech -	Detention OnlyPeak Elev=311.26' Storage=17 cf Inflow=1.0 cfs 22,224 cfDiscarded=1.0 cfs 22,224 cfPrimary=0.0 cfs 0 cfOutflow=1.0 cfs 22,224 cf
Pond 30.1P: SSF-3	Peak Elev=309.70' Storage=5,809 cf Inflow=2.9 cfs 10,193 cf Outflow=0.1 cfs 10,194 cf
Pond 30.2P: SSF-1	Peak Elev=317.73' Storage=11,913 cf Inflow=8.0 cfs 27,591 cf Outflow=2.1 cfs 27,594 cf
Pond 31.0P: SSF-2	Peak Elev=316.81' Storage=7,205 cf Inflow=4.1 cfs 14,113 cf Outflow=0.3 cfs 14,115 cf

Inflow=0.7 cfs 3,730 cf Primary=0.7 cfs 3,730 cf

Inflow=1.4 cfs 13,459 cf Primary=1.4 cfs 13,459 cf

Inflow=0.1 cfs 10,475 cf Primary=0.1 cfs 10,475 cf

> Inflow=0.0 cfs 0 cf Primary=0.0 cfs 0 cf

Link POA-4: POA-4

Total Runoff Area = 990,917 sf Runoff Volume = 91,590 cf Average Runoff Depth = 1.11" 61.81% Pervious = 612,458 sf 38.19% Impervious = 378,459 sf

Link POA-2: POA-2

Link POA-3: POA-3

Type III 24-hr 2-YR Rainfall=3.10" Printed 6/20/2025 Page 5

Subcatchment10.0S:	Runoff Area=207,220 sf 5.79% Impervious Runoff Depth=0.35" Flow Length=490' Tc=23.4 min CN=WQ Runoff=1.0 cfs 6,001 cf
Subcatchment20.0S:	Runoff Area=227,432 sf 12.39% Impervious Runoff Depth=0.55" Flow Length=441' Tc=17.6 min CN=WQ Runoff=2.1 cfs 10,356 cf
Subcatchment21.0S:	Runoff Area=50,218 sf 56.01% Impervious Runoff Depth=2.50" Flow Length=134' Tc=6.0 min CN=WQ Runoff=2.9 cfs 10,462 cf
Subcatchment22.0S:	Runoff Area=120,447 sf 77.21% Impervious Runoff Depth=3.40" Flow Length=150' Tc=6.0 min CN=WQ Runoff=9.6 cfs 34,107 cf
Subcatchment30.0S:	Runoff Area=106,675 sf 0.00% Impervious Runoff Depth=0.06" Flow Length=515' Tc=21.2 min CN=WQ Runoff=0.1 cfs 530 cf
Subcatchment30.1S:	Runoff Area=52,105 sf 81.85% Impervious Runoff Depth=3.59" Flow Length=182' Tc=6.0 min CN=WQ Runoff=4.4 cfs 15,609 cf
Subcatchment30.2S:	Runoff Area=131,790 sf 87.60% Impervious Runoff Depth=3.84" Flow Length=100' Slope=0.0220 '/' Tc=6.0 min CN=WQ Runoff=11.9 cfs 42,155 cf
Subcatchment30.3S:	Runoff Area=67,415 sf 87.60% Impervious Runoff Depth=3.84" Flow Length=105' Slope=0.0204 '/' Tc=6.0 min CN=WQ Runoff=6.1 cfs 21,564 cf
Subcatchment40.0S:	Runoff Area=27,615 sf 0.00% Impervious Runoff Depth=0.04" Flow Length=75' Slope=0.5000 '/' Tc=6.0 min CN=WQ Runoff=0.0 cfs 81 cf
Pond 5P: StormTech-	Detention Only Peak Elev=312.29' Storage=7,888 cf Inflow=11.7 cfs 63,721 cf Discarded=3.5 cfs 63,721 cf Primary=0.0 cfs 0 cf Outflow=3.5 cfs 63,721 cf
Pond 21.0P: USDF-1	Peak Elev=314.70' Storage=6,931 cf Inflow=2.9 cfs 10,462 cf Primary=0.1 cfs 10,462 cf Secondary=0.0 cfs 0 cf Outflow=0.1 cfs 10,462 cf
Pond 22.0P: SSF-4	Peak Elev=317.14' Storage=12,114 cf Inflow=9.6 cfs 34,107 cf Outflow=5.9 cfs 34,108 cf
Pond 24P: StormTech	- Detention Only Peak Elev=312.63' Storage=4,937 cf Inflow=5.9 cfs 34,108 cf Discarded=1.4 cfs 34,108 cf Primary=0.0 cfs 0 cf Outflow=1.4 cfs 34,108 cf
Pond 30.1P: SSF-3	Peak Elev=310.50' Storage=9,747 cf Inflow=4.4 cfs 15,609 cf Outflow=0.1 cfs 15,610 cf
Pond 30.2P: SSF-1	Peak Elev=318.10' Storage=13,787 cf Inflow=11.9 cfs 42,155 cf Outflow=8.8 cfs 42,156 cf
Pond 31.0P: SSF-2	Peak Elev=317.08' Storage=8,150 cf Inflow=6.1 cfs 21,564 cf Outflow=3.2 cfs 21,565 cf

230411-01 Post Conditions Prepared by Sebago Technics <u>HydroCAD® 10.20-7a_s/n 00643</u> © 2025 HydroCAD Software Solutions	Type III 24-hr 10-YR Rainfall=4.60" Printed 6/20/2025 s LLC Page 7
Link POA-1: POA-1	Inflow=1.0 cfs 6,001 cf Primary=1.0 cfs 6,001 cf
	•
Link POA-2: POA-2	Inflow=2.1 cfs 20,817 cf Primary=2.1 cfs 20,817 cf
Link POA-3: POA-3	Inflow=0.2 cfs 16,141 cf Primary=0.2 cfs 16,141 cf

Link POA-4: POA-4

Total Runoff Area = 990,917 sf Runoff Volume = 140,863 cf Average Runoff Depth = 1.71" 61.81% Pervious = 612,458 sf 38.19% Impervious = 378,459 sf

Inflow=0.0 cfs 81 cf Primary=0.0 cfs 81 cf

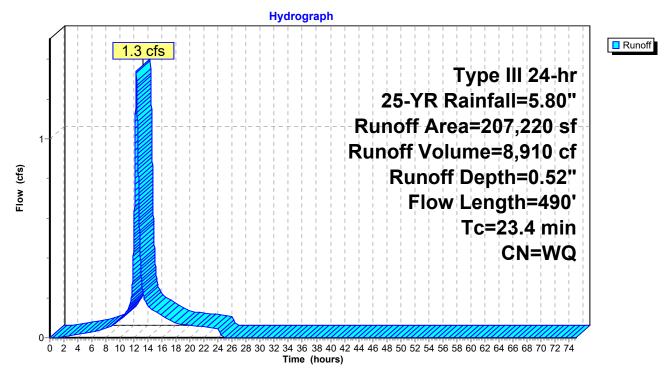
Subcatchment10.0S:	Runoff Area=207,220 sf 5.79% Impervious Runoff Depth=0.52" Flow Length=490' Tc=23.4 min CN=WQ Runoff=1.3 cfs 8,910 cf
Subcatchment20.0S:	Runoff Area=227,432 sf 12.39% Impervious Runoff Depth=0.75" Flow Length=441' Tc=17.6 min CN=WQ Runoff=2.6 cfs 14,216 cf
Subcatchment21.0S:	Runoff Area=50,218 sf 56.01% Impervious Runoff Depth=3.29" Flow Length=134' Tc=6.0 min CN=WQ Runoff=3.7 cfs 13,755 cf
Subcatchment22.0S:	Runoff Area=120,447 sf 77.21% Impervious Runoff Depth=4.38" Flow Length=150' Tc=6.0 min CN=WQ Runoff=12.1 cfs 43,994 cf
Subcatchment30.0S:	Runoff Area=106,675 sf 0.00% Impervious Runoff Depth=0.14" Flow Length=515' Tc=21.2 min CN=WQ Runoff=0.1 cfs 1,271 cf
Subcatchment30.1S:	Runoff Area=52,105 sf 81.85% Impervious Runoff Depth=4.62" Flow Length=182' Tc=6.0 min CN=WQ Runoff=5.6 cfs 20,075 cf
Subcatchment30.2S:	Runoff Area=131,790 sf 87.60% Impervious Runoff Depth=4.92" Flow Length=100' Slope=0.0220 '/' Tc=6.0 min CN=WQ Runoff=15.1 cfs 54,041 cf
Subcatchment30.3S:	Runoff Area=67,415 sf 87.60% Impervious Runoff Depth=4.92" Flow Length=105' Slope=0.0204 '/' Tc=6.0 min CN=WQ Runoff=7.7 cfs 27,644 cf
Subcatchment40.0S:	Runoff Area=27,615 sf 0.00% Impervious Runoff Depth=0.15" Flow Length=75' Slope=0.5000 '/' Tc=6.0 min CN=WQ Runoff=0.0 cfs 336 cf
Pond 5P: StormTech-	Detention Only Peak Elev=313.02' Storage=17,080 cf Inflow=19.6 cfs 81,688 cf Discarded=3.5 cfs 81,688 cf Primary=0.0 cfs 0 cf Outflow=3.5 cfs 81,688 cf
Pond 21.0P: USDF-1	Peak Elev=315.08' Storage=8,897 cf Inflow=3.7 cfs 13,755 cf Primary=0.1 cfs 13,755 cf Secondary=0.0 cfs 0 cf Outflow=0.1 cfs 13,755 cf
Pond 22.0P: SSF-4	Peak Elev=317.33' Storage=13,000 cf Inflow=12.1 cfs 43,994 cf Outflow=10.4 cfs 43,995 cf
Pond 24P: StormTech	- Detention Only Peak Elev=313.88' Storage=10,438 cf Inflow=10.4 cfs 43,995 cf Discarded=1.4 cfs 43,995 cf Primary=0.0 cfs 0 cf Outflow=1.4 cfs 43,995 cf
Pond 30.1P: SSF-3	Peak Elev=311.03' Storage=12,053 cf Inflow=5.6 cfs 20,075 cf Outflow=0.3 cfs 20,076 cf
Pond 30.2P: SSF-1	Peak Elev=318.27' Storage=14,596 cf Inflow=15.1 cfs 54,041 cf Outflow=13.1 cfs 54,043 cf
Pond 31.0P: SSF-2	Peak Elev=317.26' Storage=8,760 cf Inflow=7.7 cfs 27,644 cf Outflow=6.5 cfs 27,645 cf

230411-01 Post Conditions Prepared by Sebago Technics <u>HydroCAD® 10.20-7a s/n 00643 © 2025 HydroCAD Software Solutions</u>	Type III 24-hr 25-YR Rainfall=5.80" Printed 6/20/2025 s LLC Page 9
Link POA-1: POA-1	Inflow=1.3 cfs 8,910 cf Primary=1.3 cfs 8,910 cf
Link POA-2: POA-2	Inflow=2.7 cfs 27,971 cf Primary=2.7 cfs 27,971 cf
Link POA-3: POA-3	Inflow=0.3 cfs 21,348 cf Primary=0.3 cfs 21,348 cf

Link POA-4: POA-4

Inflow=0.0 cfs 336 cf Primary=0.0 cfs 336 cf

Total Runoff Area = 990,917 sf Runoff Volume = 184,243 cf Average Runoff Depth = 2.23" 61.81% Pervious = 612,458 sf 38.19% Impervious = 378,459 sf


Summary for Subcatchment 10.0S:

Runoff = 1.3 cfs @ 12.30 hrs, Volume= 8,910 cf, Depth= 0.52" Routed to Link POA-1 : POA-1

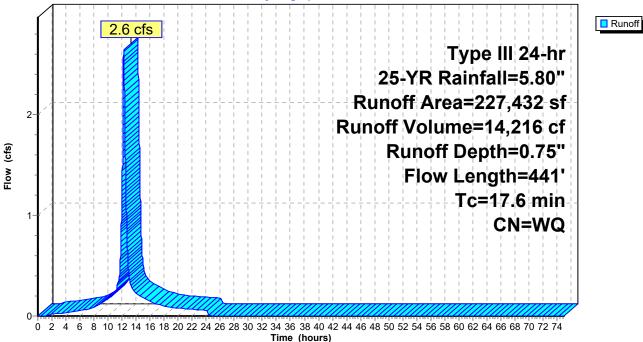
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

A	rea (sf)	CN D	escription			
	12,000	98 P	Paved parking, HSG A			
	3,903	96 G	Gravel surface, HSG A			
	27,671	39 >	>75% Grass cover, Good, HSG A			
	14,320	30 V	Voods, Go	od, HSG A		
1	49,326	30 N	leadow, no	on-grazed,	HSG A	
2	07,220	V	Veighted A	verage		
1	95,220	9	4.21% Per	vious Area		
	12,000	5	.79% Impe	ervious Area	а	
_		-		- ··		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
10.3	50	0.0300	0.08		Sheet Flow, A-B	
					Woods: Light underbrush n= 0.400 P2= 3.30"	
12.8	385	0.0100	0.50		Shallow Concentrated Flow, B-C	
					Woodland Kv= 5.0 fps	
0.3	55	0.2000	3.13		Shallow Concentrated Flow, C-D	
					Short Grass Pasture Kv= 7.0 fps	
23.4	490	Total				

Subcatchment 10.0S:

Summary for Subcatchment 20.0S:

Runoff = 2.6 cfs @ 12.23 hrs, Volume= 14,216 cf, Depth= 0.75" Routed to Link POA-2 : POA-2

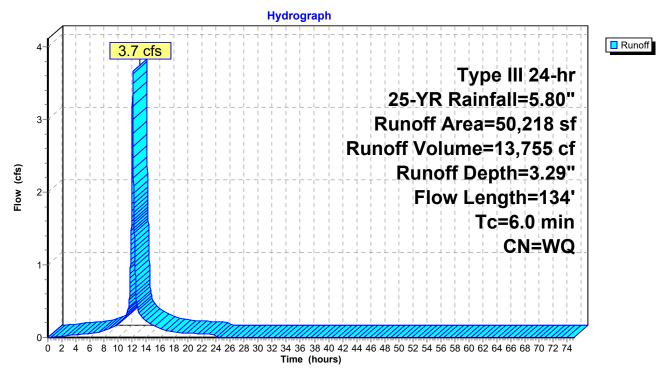

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN E						
	1	69,278	30 V	Voods, Go	od, HSG A				
		9,909	39 >	75% Gras	s cover, Go	ood, HSG A			
		20,056	30 N	leadow, no	on-grazed,	HSG A			
_		28,189	98 F	aved park	ing, HSG A				
	227,432 Weighted Average								
		99,243	-		rvious Area				
	28,189 12.39% Impervious Are					ea			
	Та	1	01	V/.1!6	0	Description			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)				
_		•	•			Sheet Flow, A-B			
_	(min) 9.8	(feet) 57	(ft/ft) 0.0440	(ft/sec) 0.10		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30"			
_	(min)	(feet) 57	(ft/ft)	(ft/sec)		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C			
_	(min) 9.8	(feet) 57 266	(ft/ft) 0.0440	(ft/sec) 0.10		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
_	(min) 9.8 6.8	(feet) 57 266	(ft/ft) 0.0440 0.0170	(ft/sec) 0.10 0.65		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C			

17.6 441 Total

Subcatchment 20.0S:

Hydrograph

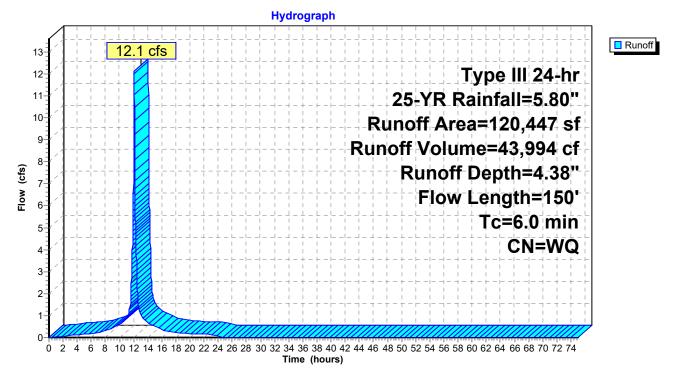

Summary for Subcatchment 21.0S:

Runoff = 3.7 cfs @ 12.08 hrs, Volume= 13,755 cf, Depth= 3.29" Routed to Pond 21.0P : USDF-1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN E	Description					
		24,154	98 F	Paved parking, HSG A					
		22,091	39 >	>75% Grass cover, Good, HSG A					
_		3,973	98 F	Roofs, HSG A					
50,218 Weighted Average									
22,091 43.99% Pervious Area									
28,127 56.01% Impervious Area					pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.3	16	0.0200	0.97		Sheet Flow, A-B			
						Smooth surfaces n= 0.011 P2= 3.30"			
	0.6	118	0.0280	3.40		Shallow Concentrated Flow, B-C			
						Paved Kv= 20.3 fps			
_	5.1			Direct Entry, Direct Entry					
	60	134	Total						

Subcatchment 21.0S:

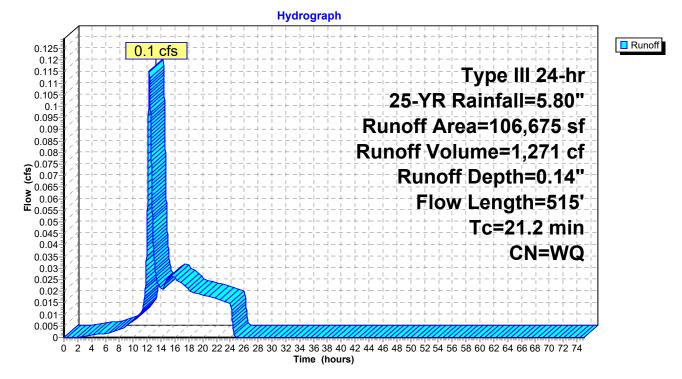

Summary for Subcatchment 22.0S:

Runoff = 12.1 cfs @ 12.08 hrs, Volume= 43,994 cf, Depth= 4.38" Routed to Pond 22.0P : SSF-4

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN D	Description					
		73,452	98 F	Paved parking, HSG A					
		27,455	39 >						
_		19,540	98 F	8 Roofs, HSG A					
	120,447 Weighted Average								
27,455 22.79% Pervious Area					vious Area				
92,992 77.21% Impervious Area					pervious Ar	ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	2.6	50	0.3400	0.32		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.30"			
	1.1	100	0.1000	1.58		Shallow Concentrated Flow,			
Woodland Kv= 5.0 fps						I			
_	2.3			Direct Entry, Direct Entry					
	6.0	150	Total						

Subcatchment 22.0S:


Summary for Subcatchment 30.0S:

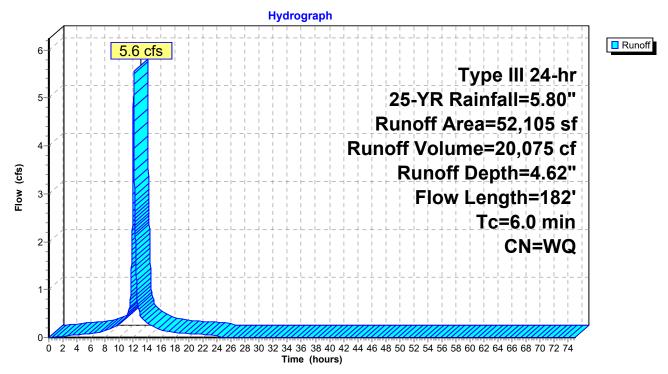
Runoff = 0.1 cfs @ 12.31 hrs, Volume= 1,271 cf, Depth= 0.14" Routed to Link POA-3 : POA-3

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

	Area (sf)	CN E	N Description					
	8,750	39 >	39 >75% Grass cover, Good, HSG A					
	96,654	30 V	30 Woods, Good, HSG A					
	1,271	96 0	96 Gravel surface, HSG A					
106,675 Weighted Average								
	106,675	1	00.00% Pe	ervious Are	а			
To	: Length	Slope	Velocity	Capacity	Description			
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)				
14.7	50	0.0500	0.06		Sheet Flow, A			
					Woods: Dense underbrush n= 0.800 P2= 3.30"			
4.0	360	0.0900	1.50		Shallow Concentrated Flow, B			
					Woodland Kv= 5.0 fps			
2.5	5 105	0.0200	0.71		Shallow Concentrated Flow, C			
					Woodland Kv= 5.0 fps			
21.2	2 515	Total						

Subcatchment 30.0S:

Summary for Subcatchment 30.1S:


Runoff = 5.6 cfs @ 12.08 hrs, Volume= 20,075 cf, Depth= 4.62" Routed to Pond 30.1P : SSF-3

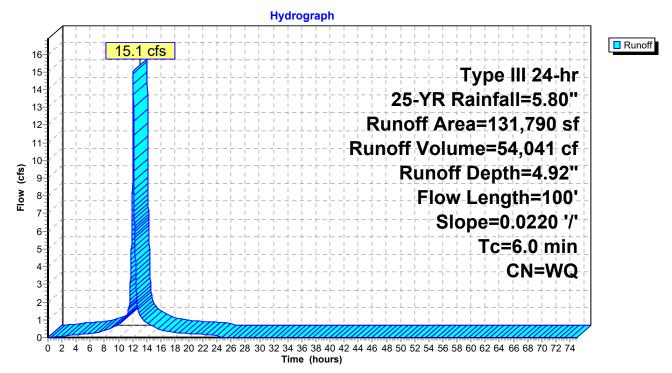
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

	A	rea (sf)	CN E						
		30,432	98 F	98 Paved parking, HSG A					
		9,456	39 >	>75% Grass cover, Good, HSG A					
_		12,217	98 F	Roofs, HSG A					
	52,105 Weighted Average								
9,456 18.15% Pervious Area					rvious Area				
42,649 81.85% Impervious Area					pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	2.4	110	0.0044	0.78		Sheet Flow, A-B			
						Smooth surfaces n= 0.011 P2= 3.30"			
	0.3	72	0.0436	4.24		Shallow Concentrated Flow, B-C			
				Paved Kv= 20.3 fps					
_	3.3					Direct Entry,			
	60	100	Total						

6.0 182 Total

Subcatchment 30.1S:

Summary for Subcatchment 30.2S:

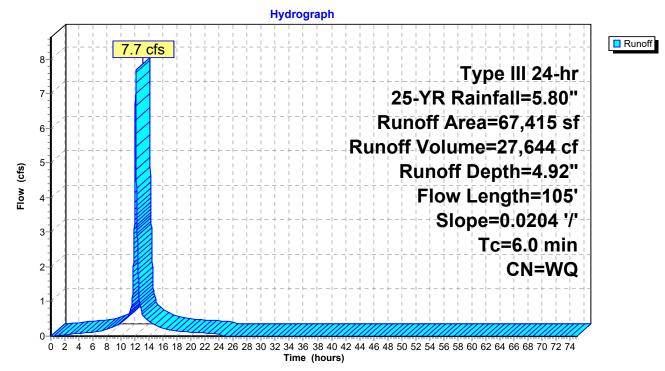

Runoff = 15.1 cfs @ 12.08 hrs, Volume= 54 Routed to Pond 30.2P : SSF-1

54,041 cf, Depth= 4.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

Ar	rea (sf)	CN D	escription						
	93,699	98 P	Paved parking, HSG A						
	21,748	98 R	loofs, HSC	βĂ					
	16,343	39 >	75% Gras	s cover, Go	bod, HSG A				
1	31,790	V	Veighted A	verage					
	16,343	1	2.40% Per	vious Area					
1	15,447	8	7.60% Imp	pervious Ar	ea				
_				•	–				
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.8	65	0.0220	1.33		Sheet Flow, A-B				
					Smooth surfaces n= 0.011 P2= 3.30"				
0.2	35	0.0220	3.01		Shallow Concentrated Flow, B-C				
					Paved Kv= 20.3 fps				
5.0					Direct Entry,				
6.0	100	Total							

Subcatchment 30.2S:

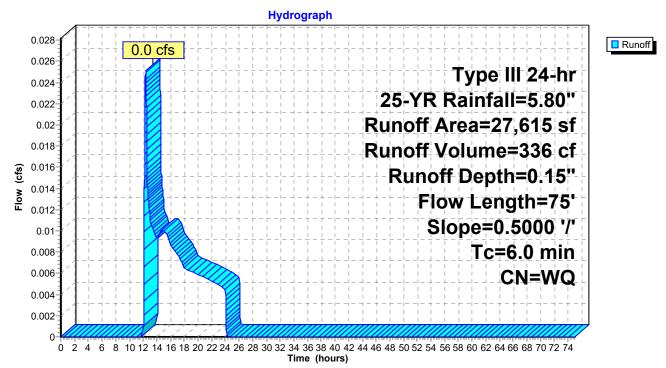

Summary for Subcatchment 30.3S:

Runoff = 7.7 cfs @ 12.08 hrs, Volume= 27,644 cf, Depth= 4.92" Routed to Pond 31.0P : SSF-2

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN I	Description					
		41,043	98	Paved park	ing, HSG A	١			
		18,012	98	Roofs, HSC	θĂ				
		8,360	39 :	>75% Gras	s cover, Go	ood, HSG A			
		67,415	١	Weighted A	verage				
		8,360	·	12.40% Pei	rvious Area	L			
		59,055	8	37.60% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.2	105	0.0204	1.42		Sheet Flow,			
						Smooth surfaces	n= 0.011	P2= 3.30"	
_	4.8					Direct Entry,			
	6.0	105	Total						

Subcatchment 30.3S:


Summary for Subcatchment 40.0S:

Runoff = 0.0 cfs @ 12.37 hrs, Volume= 336 cf, Depth= 0.15" Routed to Link POA-4 : POA-4

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

	A	rea (sf)	CN E	Description			
		0	98 F	aved park	ing, HSG A	N .	
		7,647	39 >	75% Gras	s cover, Go	bod, HSG A	
		19,968	30 V	Voods, Go	od, HSG A		
		27,615	٧	Veighted A	verage		
		27,615	1	00.00% Pe	ervious Are	a	
	Тс	Length	Slope	Velocity	Capacity	Description	
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	1.5	30	0.5000	0.34		Sheet Flow, A-B	
						Grass: Dense n= 0.240 P2= 3.30"	
	0.2	45	0.5000	3.54		Shallow Concentrated Flow, B-C	
						Woodland Kv= 5.0 fps	
	4.3					Direct Entry,	
	6.0	75	Total				

Subcatchment 40.0S:

Summary for Pond 5P: StormTech - Detention Only

Inflow Area = 199,205 sf, 87.60% Impervious, Inflow Depth = 4.92" for 25-YR event Inflow 19.6 cfs @ 12.13 hrs, Volume= 81.688 cf = 3.5 cfs @ 11.99 hrs, Volume= Outflow 81,688 cf, Atten= 82%, Lag= 0.0 min = 3.5 cfs @ 11.99 hrs, Volume= Discarded = 81.688 cf 0.0 cfs @ 0.00 hrs, Volume= Primary = 0 cf Routed to Link POA-3 : POA-3 Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 313.02' @ 12.69 hrs Surf.Area= 15,181 sf Storage= 17,080 cf

Plug-Flow detention time= 23.5 min calculated for 81,677 cf (100% of inflow) Center-of-Mass det. time= 23.5 min (1,019.4 - 995.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	311.28'	14,743 cf	87.00'W x 174.50'L x 3.75'H Field A
			56,930 cf Overall - 20,071 cf Embedded = 36,859 cf x 40.0% Voids
#2A	312.03'	20,071 cf	ADS_StormTech DC-780 b +Capx 432 Inside #1
			Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12'L = 46.2 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			432 Chambers in 18 Rows
			Cap Storage= 2.7 cf x 2 x 18 rows = 95.6 cf
		34,814 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	311.93'	24.0" Round Culvert
	-		L= 298.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 311.93' / 308.69' S= 0.0109 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Discarded	311.28'	10.000 in/hr Infiltration over Surface area Phase-In= 0.01'
#3	Device 1	314.03'	6.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=3.5 cfs @ 11.99 hrs HW=311.32' (Free Discharge) **2=Infiltration** (Exfiltration Controls 3.5 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=311.28' TW=0.00' (Dynamic Tailwater)

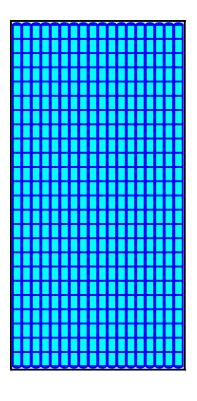
1-3=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

Pond 5P: StormTech - Detention Only - Chamber Wizard Field A

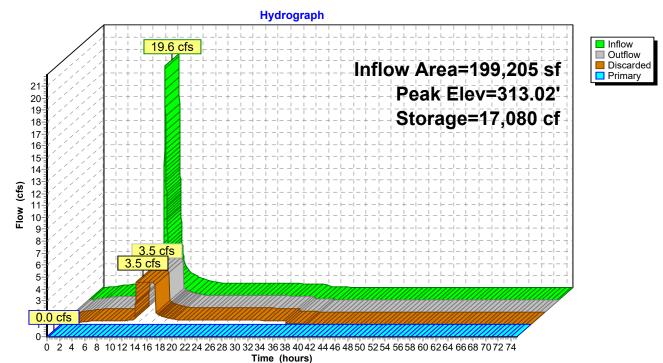
Chamber Model = ADS_StormTechDC-780 b +Cap (ADS StormTech®DC-780 with cap storage)

Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12'L = 46.2 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap Cap Storage= 2.7 cf x 2 x 18 rows = 95.6 cf

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


24 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 172.50' Row Length +12.0" End Stone x 2 = 174.50' Base Length 18 Rows x 51.0" Wide + 6.0" Spacing x 17 + 12.0" Side Stone x 2 = 87.00' Base Width 9.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.75' Field Height

432 Chambers x 46.2 cf + 2.7 cf Cap Volume x 2 x 18 Rows = 20,070.9 cf Chamber Storage


56,929.5 cf Field - 20,070.9 cf Chambers = 36,858.7 cf Stone x 40.0% Voids = 14,743.5 cf Stone Storage

Chamber Storage + Stone Storage = 34,814.3 cf = 0.799 af Overall Storage Efficiency = 61.2% Overall System Size = 174.50' x 87.00' x 3.75'

432 Chambers 2,108.5 cy Field 1,365.1 cy Stone

Pond 5P: StormTech - Detention Only

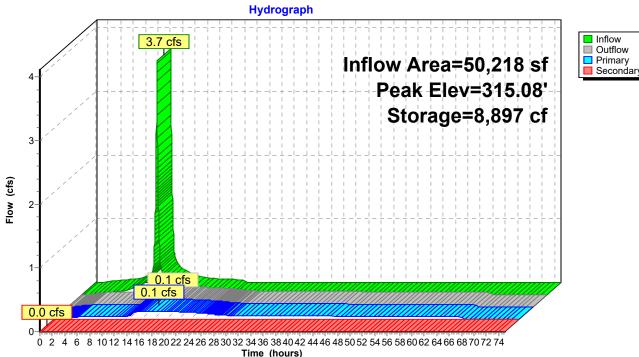
Summary for Pond 21.0P: USDF-1

Inflow Area = 50,218 sf, 56.01% Impervious, Inflow Depth = 3.29" for 25-YR event Inflow = 3.7 cfs @ 12.08 hrs, Volume= 13.755 cf 0.1 cfs @ 15.81 hrs, Volume= 0.1 cfs @ 15.81 hrs, Volume= Outflow 13,755 cf, Atten= 97%, Lag= 223.9 min = Primary = 13,755 cf Routed to Link POA-2 : POA-2 Secondary = 0.0 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link POA-2 : POA-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 315.08' @ 15.81 hrs Surf.Area= 5,241 sf Storage= 8,897 cf Flood Elev= 317.50' Surf.Area= 6,968 sf Storage= 20,572 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1,053.6 min (1,810.8 - 757.2)

Volume	Invert	Avail.	.Storage	ge Storage Description			
#1 310.83' 20,5		0,572 cf	2 cf Custom Stage Data (Prismatic)Listed below (Recalc)		Listed below (Recalc)		
Elevatio	Elevation Surf.Area Voids		Inc.Store	Cum.Store			
(fee	t)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)		
310.8	3	3,000	0.0	0			
312.9		3,000	0.0	0	0 0		
313.0		,	100.0	30	30		
314.0	0		100.0	3,674	3,704		
315.0	0	5,168	100.0	4,758	8,462		
316.0	0	6,042	100.0	5,605	14,067		
317.0	0	6,968	100.0	6,505	20,572		
Device	Routing		-	tlet Devices			
#1	Primary	310.		0" Round Outlet			
				82.0' CPP, proje			
						S= 0.0052 '/' Cc= 0.900	
	During 4	040				rior, Flow Area= 0.79 sf	
#2	Device 1	310.		.2" Vert. UD Orifice C= 0.600 Limited to weir flow at low heads			
#3	Device 2	310.		0.500 in/hr Infiltration over Surface area Phase-In= 0.01' 1.0" W x 3.0" H Vert. WQV Orifice C= 0.600			
#4	Device 1	314.			-	- 0.000	
#5	Device 1	316		Limited to weir flow at low heads			
#3			1.0" W x 7.0" H Vert. Beehive Grate X 29.00 C= 0.600 Limited to weir flow at low heads				
#6	Secondary	316.				sted Rectangular Weir	
110	Coolidary	010.				0 1.20 1.40 1.60 1.80 2.00	
				0 3.00 3.50 4.00			
						2.68 2.68 2.67 2.64 2.64	
				4 2.65 2.64 2.65			


Primary OutFlow Max=0.1 cfs @ 15.81 hrs HW=315.08' TW=0.00' (Dynamic Tailwater) **1=Outlet Pipe** (Passes 0.1 cfs of 5.8 cfs potential flow)

2=UD Orifice (Passes 0.1 cfs of 0.1 cfs potential flow) **3=Infiltration** (Exfiltration Controls 0.1 cfs)

-4=WQV Orifice (Orifice Controls 0.1 cfs @ 3.25 fps)

-5=Beehive Grate (Controls 0.0 cfs)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=310.83' TW=0.00' (Dynamic Tailwater) **6=Broad-Crested Rectangular Weir** (Controls 0.0 cfs)

Pond 21.0P: USDF-1

Printed 6/20/2025

Summary for Pond 22.0P: SSF-4

 Inflow Area =
 120,447 sf, 77.21% Impervious, Inflow Depth = 4.38" for 25-YR event

 Inflow =
 12.1 cfs @ 12.08 hrs, Volume=
 43,994 cf

 Outflow =
 10.4 cfs @ 12.13 hrs, Volume=
 43,995 cf, Atten= 14%, Lag= 2.9 min

 Primary =
 10.4 cfs @ 12.13 hrs, Volume=
 43,995 cf

 Routed to Pond 24P : StormTech - Detention Only
 43,995 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 317.33' @ 12.13 hrs Surf.Area= 14,558 sf Storage= 13,000 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 258.7 min (1,008.9 - 750.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	314.67'	6,520 cf	72.75'W x 96.28'L x 3.75'H Field A
			26,267 cf Overall - 9,968 cf Embedded = 16,299 cf x 40.0% Voids
#2A	315.17'	9,968 cf	ADS_StormTech SC-800 +Cap x 195 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			195 Chambers in 15 Rows
			Cap Storage= 3.4 cf x 2 x 15 rows = 102.6 cf
#3	312.50'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			16,390 cf Overall x 0.0% Voids
		16,488 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
312.5	50	7,553	0	0		
314.6	67	7,553	16,390	16,390		
Device	Routing	Invert	Outlet Devices			
#1	Primary	312.40'	Inlet / Outlet Inv	square edge h ert= 312.40' /	neadwall, Ke= 0.500 312.00' S= 0.0050 '/' Cc= 0.900 poth interior, Flow Area= 3.14 sf	
#2	Device 1	312.50'	2.0" Vert. UD cap for bleeder C= 0.600 Limited to weir flow at low heads			
#3	Device 1	316.67'				
#4 Device 3 315.37'						

Primary OutFlow Max=10.4 cfs @ 12.13 hrs HW=317.33' TW=312.23' (Dynamic Tailwater) -**1=Culvert** (Passes 10.4 cfs of 29.1 cfs potential flow)

2=UD cap for bleeder (Orifice Controls 0.2 cfs @ 10.49 fps)

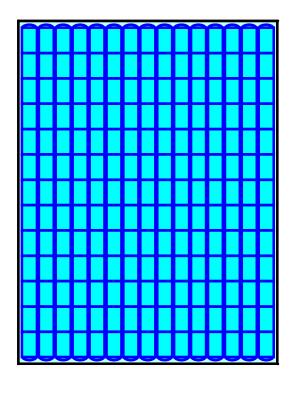
-3=Broad-Crested Rectangular Weir (Weir Controls 10.2 cfs @ 2.56 fps) -4=Overflow to OCS (Passes 10.2 cfs of 11.8 cfs potential flow)

Pond 22.0P: SSF-4 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-800 +Cap (ADS StormTech®SC-800 with cap volume)

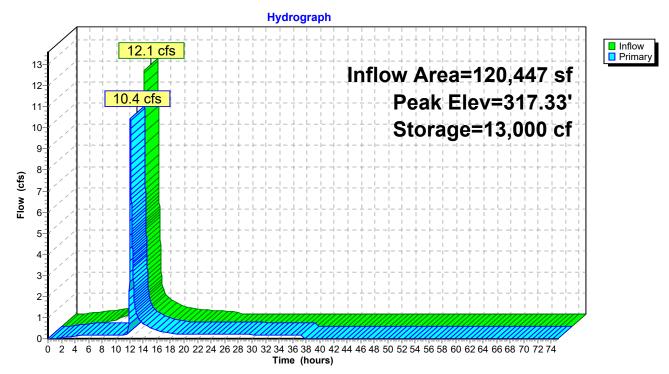
Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap Cap Storage= 3.4 cf x 2 x 15 rows = 102.6 cf

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


13 Chambers/Row x 7.12' Long +0.88' Cap Length x 2 = 94.28' Row Length +12.0" End Stone x 2 = 96.28' Base Length
15 Rows x 51.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 72.75' Base Width
6.0" Stone Base + 33.0" Chamber Height + 6.0" Stone Cover = 3.75' Field Height

195 Chambers x 50.6 cf + 3.4 cf Cap Volume x 2 x 15 Rows = 9,968.1 cf Chamber Storage

26,267.3 cf Field - 9,968.1 cf Chambers = 16,299.2 cf Stone x 40.0% Voids = 6,519.7 cf Stone Storage


Chamber Storage + Stone Storage = 16,487.8 cf = 0.379 af Overall Storage Efficiency = 62.8% Overall System Size = 96.28' x 72.75' x 3.75'

195 Chambers 972.9 cy Field 603.7 cy Stone

230411-01 Post Conditions Prepared by Sebago Technics HydroCAD® 10.20-7a s/n 00643 © 2025 HydroCAD Software Solutions LLC

Pond 22.0P: SSF-4

Summary for Pond 24P: StormTech - Detention Only

Inflow Area = 120,447 sf, 77.21% Impervious, Inflow Depth = 4.38" for 25-YR event Inflow 10.4 cfs @ 12.13 hrs, Volume= 43.995 cf = 1.4 cfs @ 11.99 hrs, Volume= Outflow 43,995 cf, Atten= 87%, Lag= 0.0 min = 1.4 cfs @ 11.99 hrs, Volume= Discarded = 43.995 cf 0.0 cfs @ 0.00 hrs, Volume= 0 cf Primary = Routed to Link POA-2 : POA-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 313.88' @ 12.90 hrs Surf.Area= 5,961 sf Storage= 10,438 cf

Plug-Flow detention time= 41.5 min calculated for 43,989 cf (100% of inflow) Center-of-Mass det. time= 41.5 min (1,050.4 - 1,008.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	311.25'	5,858 cf	72.75'W x 81.94'L x 3.75'H Field A
			22,353 cf Overall - 7,709 cf Embedded = 14,644 cf x 40.0% Voids
#2A	312.00'	7,709 cf	ADS_StormTech DC-780 b +Capx 165 Inside #1
			Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12'L = 46.2 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			165 Chambers in 15 Rows
			Cap Storage= 2.7 cf x 2 x 15 rows = 79.6 cf
		13,567 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	311.90'	24.0" Round Culvert
	-		L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 311.90' / 311.77' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Discarded	311.25'	10.000 in/hr Infiltration over Surface area Phase-In= 0.01'
#3	Device 1	314.00'	6.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=1.4 cfs @ 11.99 hrs HW=311.29' (Free Discharge) **2=Infiltration** (Exfiltration Controls 1.4 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=311.25' TW=0.00' (Dynamic Tailwater)

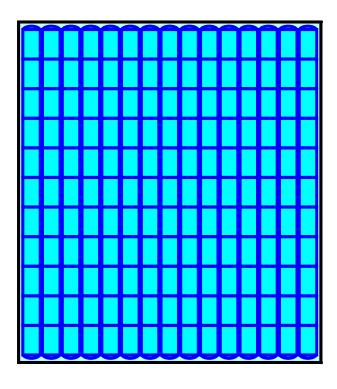
1-3=Broad-Crested Rectangular Weir (Controls 0.0 cfs)

Pond 24P: StormTech - Detention Only - Chamber Wizard Field A

Chamber Model = ADS_StormTechDC-780 b +Cap (ADS StormTech®DC-780 with cap storage)

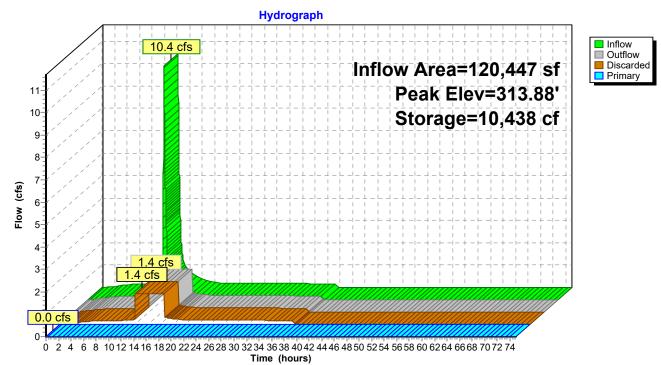
Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12'L = 46.2 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap Cap Storage= 2.7 cf x 2 x 15 rows = 79.6 cf

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


11 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 79.94' Row Length +12.0" End Stone x 2 = 81.94' Base Length
15 Rows x 51.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 72.75' Base Width
9.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.75' Field Height

165 Chambers x 46.2 cf + 2.7 cf Cap Volume x 2 x 15 Rows = 7,709.1 cf Chamber Storage

22,353.3 cf Field - 7,709.1 cf Chambers = 14,644.3 cf Stone x 40.0% Voids = 5,857.7 cf Stone Storage


Chamber Storage + Stone Storage = 13,566.8 cf = 0.311 af Overall Storage Efficiency = 60.7% Overall System Size = 81.94' x 72.75' x 3.75'

165 Chambers 827.9 cy Field 542.4 cy Stone

Pond 24P: StormTech - Detention Only

Summary for Pond 30.1P: SSF-3

 Inflow Area =
 52,105 sf, 81.85% Impervious, Inflow Depth = 4.62" for 25-YR event

 Inflow =
 5.6 cfs @
 12.08 hrs, Volume=
 20,075 cf

 Outflow =
 0.3 cfs @
 14.14 hrs, Volume=
 20,076 cf, Atten= 95%, Lag= 123.4 min

 Primary =
 0.3 cfs @
 14.14 hrs, Volume=
 20,076 cf

 Routed to Link POA-3 : POA-3
 For 25-YR event

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 311.03' @ 14.14 hrs Surf.Area= 8,922 sf Storage= 12,053 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 811.8 min (1,560.9 - 749.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	308.35'	6,022 cf	49.00'W x 131.87'L x 3.75'H Field A
			24,231 cf Overall - 9,175 cf Embedded = 15,055 cf x 40.0% Voids
#2A	308.85'	9,175 cf	ADS_StormTech SC-800 +Cap x 180 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			180 Chambers in 10 Rows
			Cap Storage= 3.4 cf x 2 x 10 rows = 68.4 cf
#3	306.18'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			5,340 cf Overall x 0.0% Voids
		15,197 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
306.1	18	2,461	0	0	
308.3	35	2,461	5,340	5,340	
Device	Routing	Invert	Outlet Devices		
#1	Primary	306.08'	Inlet / Outlet Inv	, projecting, no ert= 306.08' / 3	o headwall, Ke= 0.900 304.75' S= 0.0116 '/' Cc= 0.900 poth interior, Flow Area= 3.14 sf
#2	Device 1	306.18'		ap for bleede	r C= 0.600
#3	Device 5	309.05'	Inlet / Outlet Inv	quare edge he ert= 309.05' / 3	CS adwall, Ke= 0.500 308.93' S= 0.0200 '/' Cc= 0.900 poth interior, Flow Area= 3.14 sf
#4 #5	Device 1 Device 1	310.35' 311.00'	2.0" Vert. WQV	Orifice C= 0 breadth Broa 0 0.40 0.60 (0.600 Limited to weir flow at low heads ad-Crested Rectangular Weir 0.80 1.00

Primary OutFlow Max=0.3 cfs @ 14.14 hrs HW=311.03' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.3 cfs of 23.7 cfs potential flow)

2=UD cap for bleeder (Orifice Controls 0.1 cfs @ 10.54 fps)

-4=WQV Orifice (Orifice Controls 0.1 cfs @ 3.72 fps)

5=Broad-Crested Rectangular Weir (Weir Controls 0.1 cfs @ 0.50 fps) **3=Overflow to OCS** (Passes 0.1 cfs of 2.7 cfs potential flow)

Pond 30.1P: SSF-3 - Chamber Wizard Field A

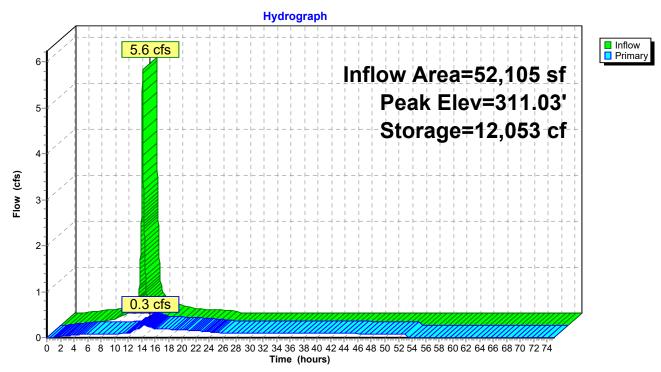
Chamber Model = ADS_StormTechSC-800 +Cap (ADS StormTech®SC-800 with cap volume)

Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap Cap Storage= 3.4 cf x 2 x 10 rows = 68.4 cf

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

18 Chambers/Row x 7.12' Long +0.88' Cap Length x 2 = 129.87' Row Length +12.0" End Stone x 2 = 131.87' Base Length 10 Rows x 51.0" Wide + 6.0" Spacing x 9 + 12.0" Side Stone x 2 = 49.00' Base Width 6.0" Stone Base + 33.0" Chamber Height + 6.0" Stone Cover = 3.75' Field Height

180 Chambers x 50.6 cf + 3.4 cf Cap Volume x 2 x 10 Rows = 9,175.0 cf Chamber Storage


24,230.5 cf Field - 9,175.0 cf Chambers = 15,055.5 cf Stone x 40.0% Voids = 6,022.2 cf Stone Storage

Chamber Storage + Stone Storage = 15,197.2 cf = 0.349 af Overall Storage Efficiency = 62.7% Overall System Size = 131.87' x 49.00' x 3.75'

180 Chambers 897.4 cy Field 557.6 cy Stone

٦	Π	Π	Π	Π	Π	Π	Π	Π	
	U	U	U	U	U	U	U	U	

Pond 30.1P: SSF-3

Summary for Pond 30.2P: SSF-1

 Inflow Area =
 131,790 sf, 87.60% Impervious, Inflow Depth = 4.92" for 25-YR event

 Inflow =
 15.1 cfs @
 12.08 hrs, Volume=
 54,041 cf

 Outflow =
 13.1 cfs @
 12.13 hrs, Volume=
 54,043 cf, Atten= 13%, Lag= 2.7 min

 Primary =
 13.1 cfs @
 12.13 hrs, Volume=
 54,043 cf

 Routed to Pond 5P : StormTech - Detention Only
 54,043 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 318.27' @ 12.13 hrs Surf.Area= 15,177 sf Storage= 14,596 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 222.3 min (970.1 - 747.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	315.50'	6,826 cf	82.25'W x 89.17'L x 3.75'H Field A
			27,502 cf Overall - 10,437 cf Embedded = 17,065 cf x 40.0% Voids
#2A	316.00'	10,437 cf	ADS_StormTech SC-800 +Cap x 204 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			204 Chambers in 17 Rows
			Cap Storage= 3.4 cf x 2 x 17 rows = 116.3 cf
#3B	315.50'	311 cf	6.25'W x 46.47'L x 3.75'H Field B
			1,089 cf Overall - 310 cf Embedded = 779 cf x 40.0% Voids
#4B	316.00'	310 cf	ADS_StormTech SC-800 +Cap x 6 Inside #3
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			Cap Storage= 3.4 cf x 2 x 1 rows = 6.8 cf
#5	313.33'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			16,390 cf Overall x 0.0% Voids
		17,885 cf	Total Available Storage

Storage Group A created with Chamber Wizard Storage Group B created with Chamber Wizard

Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
313.3	33	7,553	0	0	
315.5	50	7,553	16,390	16,390	
Device	Routing	Invert	Outlet Devices		
#1	Primary	313.23'	24.0" Round C	ulvert	
			L= 46.0' CPP, s	square edge h	neadwall, Ke= 0.500
			Inlet / Outlet Inv	ert= 313.23'/	312.05' S= 0.0257 '/' Cc= 0.900
			n= 0.013 Corrug	gated PE, smo	ooth interior, Flow Area= 3.14 sf
#2	Device 1	313.33'	2.2" Vert. UD c	ap for bleede	r C= 0.600
			Limited to weir f	low at low hea	ads
#3	Device 1	317.50'	6.0' long x 0.5'	breadth Broa	ad-Crested Rectangular Weir
			Head (feet) 0.20	0 0.40 0.60	0.80 1.00
			Coef. (English)	2.80 2.92 3.	08 3.30 3.32
#4	Device 3	316.20'	24.0" Round O		

L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 316.20' / 316.14' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=13.1 cfs @ 12.13 hrs HW=318.27' TW=312.09' (Dynamic Tailwater) -**1=Culvert** (Passes 13.1 cfs of 30.4 cfs potential flow)

-2=UD cap for bleeder (Orifice Controls 0.3 cfs @ 10.61 fps)

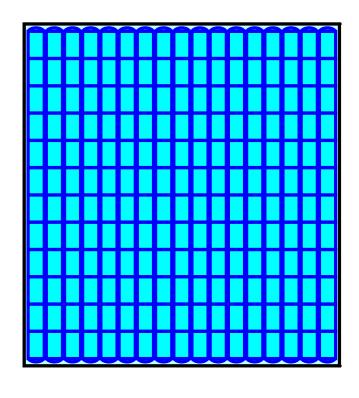
3=Broad-Crested Rectangular Weir(Passes 12.8 cfs of 13.3 cfs potential flow) **4=Overflow to OCS** (Barrel Controls 12.8 cfs @ 4.89 fps)

Pond 30.2P: SSF-1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-800 +Cap (ADS StormTech®SC-800 with cap volume)

Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap Cap Storage= 3.4 cf x 2 x 17 rows = 116.3 cf

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


12 Chambers/Row x 7.12' Long +0.88' Cap Length x 2 = 87.17' Row Length +12.0" End Stone x 2 = 89.17'Base Length 17 Rows x 51.0" Wide + 6.0" Spacing x 16 + 12.0" Side Stone x 2 = 82.25' Base Width 6.0" Stone Base + 33.0" Chamber Height + 6.0" Stone Cover = 3.75' Field Height

204 Chambers x 50.6 cf + 3.4 cf Cap Volume x 2 x 17 Rows = 10,437.1 cf Chamber Storage

27,502.3 cf Field - 10,437.1 cf Chambers = 17,065.2 cf Stone x 40.0% Voids = 6,826.1 cf Stone Storage

Chamber Storage + Stone Storage = 17,263.2 cf = 0.396 af Overall Storage Efficiency = 62.8% Overall System Size = 89.17' x 82.25' x 3.75'

204 Chambers 1,018.6 cy Field 632.0 cy Stone

Pond 30.2P: SSF-1 - Chamber Wizard Field B

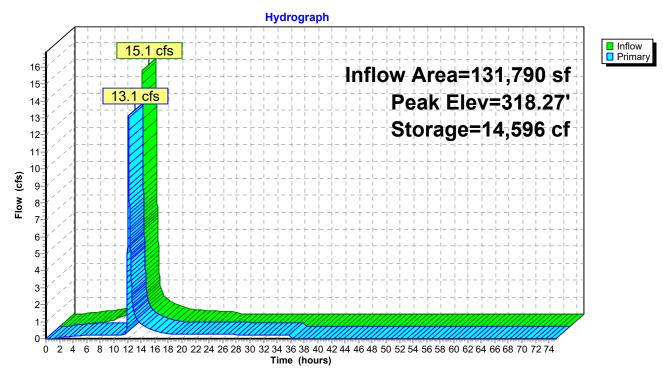
Chamber Model = ADS_StormTechSC-800 +Cap (ADS StormTech®SC-800 with cap volume)

Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap Cap Storage= 3.4 cf x 2 x 1 rows = 6.8 cf

6 Chambers/Row x 7.12' Long +0.88' Cap Length x 2 = 44.47' Row Length +12.0" End Stone x 2 = 46.47' Base Length 1 Rows x 51.0" Wide + 12.0" Side Stone x 2 = 6.25' Base Width

6.0" Stone Base + 33.0" Chamber Height + 6.0" Stone Cover = 3.75' Field Height

6 Chambers x 50.6 cf + 3.4 cf Cap Volume x 2 x 1 Rows = 310.4 cf Chamber Storage


1,089.1 cf Field - 310.4 cf Chambers = 778.7 cf Stone x 40.0% Voids = 311.5 cf Stone Storage

Chamber Storage + Stone Storage = 621.9 cf = 0.014 afOverall Storage Efficiency = 57.1%Overall System Size = $46.47' \times 6.25' \times 3.75'$

6 Chambers 40.3 cy Field 28.8 cy Stone

Pond 30.2P: SSF-1

Summary for Pond 31.0P: SSF-2

 Inflow Area =
 67,415 sf, 87.60% Impervious, Inflow Depth = 4.92" for 25-YR event

 Inflow =
 7.7 cfs @
 12.08 hrs, Volume=
 27,644 cf

 Outflow =
 6.5 cfs @
 12.13 hrs, Volume=
 27,645 cf, Atten= 15%, Lag= 3.0 min

 Primary =
 6.5 cfs @
 12.13 hrs, Volume=
 27,645 cf

 Routed to Pond 5P : StormTech - Detention Only
 27,645 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 317.26' @ 12.13 hrs Surf.Area= 8,744 sf Storage= 8,760 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 298.5 min (1,046.3 - 747.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	314.76'	4,865 cf	40.50'W x 125.75'L x 3.75'H Field A
			19,098 cf Overall - 6,935 cf Embedded = 12,163 cf x 40.0% Voids
#2A	315.26'	6,935 cf	ADS_StormTech SC-800 +Cap x 136 Inside #1
			Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf
			Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap
			136 Chambers in 8 Rows
			Cap Storage= 3.4 cf x 2 x 8 rows = 54.7 cf
#3	312.59'	0 cf	Build up to UD (Prismatic)Listed below (Recalc)
			7,923 cf Overall x 0.0% Voids
		11,800 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
312.5	59	3,651	0	0		
314.7	76	3,651	7,923	7,923		
Device	Routing	Invert	Outlet Devices			
#1	Primary	312.49'	24.0" Round C	ulvert		
					neadwall, Ke= 0.500	
					312.03' S= 0.0131 '/' Cc= 0.900	
					both interior, Flow Area= 3.14 sf	
#2	Device 1	312.59'				
			Limited to weir f			
#3	Device 1	316.76'			ad-Crested Rectangular Weir	
			Head (feet) 0.2			
	D · · ·		Coef. (English)			
#4	Device 3	315.46'				
					eadwall, Ke= 0.500	
					315.34' S= 0.0200 '/' Cc= 0.900	
			n = 0.013 Corru	galed PE, smo	both interior, Flow Area= 3.14 sf	

Primary OutFlow Max=6.5 cfs @ 12.13 hrs HW=317.26' TW=312.11' (Dynamic Tailwater) -1=Culvert (Passes 6.5 cfs of 29.4 cfs potential flow)

2=UD cap for bleeder (Orifice Controls 0.1 cfs @ 10.33 fps)

-3=Broad-Crested Rectangular Weir (Weir Controls 6.4 cfs @ 2.12 fps) -4=Overflow to OCS (Passes 6.4 cfs of 10.1 cfs potential flow)

Pond 31.0P: SSF-2 - Chamber Wizard Field A

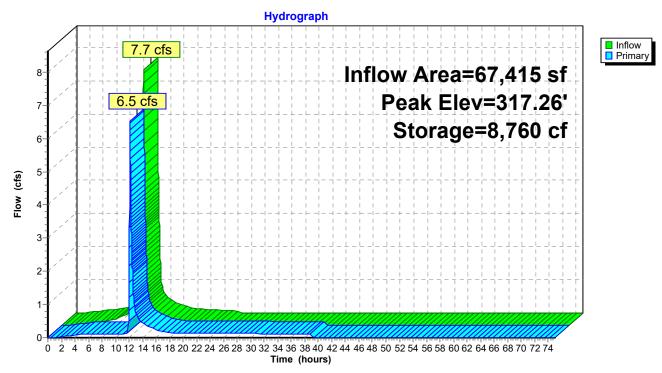
Chamber Model = ADS_StormTechSC-800 +Cap (ADS StormTech®SC-800 with cap volume)

Effective Size= 45.0"W x 33.0"H => 7.11 sf x 7.12'L = 50.6 cf Overall Size= 51.0"W x 33.0"H x 7.55'L with 0.43' Overlap Cap Storage= 3.4 cf x 2 x 8 rows = 54.7 cf

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

17 Chambers/Row x 7.12' Long +0.88' Cap Length x 2 = 122.75' Row Length +18.0" End Stone x 2 = 125.75' Base Length 8 Rows x 51.0" Wide + 6.0" Spacing x 7 + 18.0" Side Stone x 2 = 40.50' Base Width 6.0" Stone Base + 33.0" Chamber Height + 6.0" Stone Cover = 3.75' Field Height

136 Chambers x 50.6 cf + 3.4 cf Cap Volume x 2 x 8 Rows = 6,935.3 cf Chamber Storage

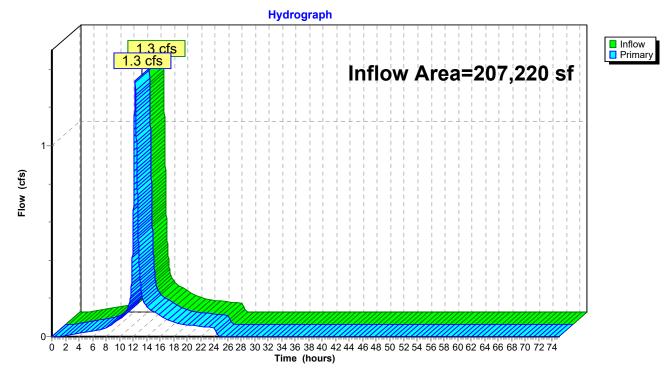

19,098.3 cf Field - 6,935.3 cf Chambers = 12,163.0 cf Stone x 40.0% Voids = 4,865.2 cf Stone Storage

Chamber Storage + Stone Storage = 11,800.5 cf = 0.271 af Overall Storage Efficiency = 61.8% Overall System Size = 125.75' x 40.50' x 3.75'

136 Chambers 707.3 cy Field 450.5 cy Stone

\frown		\frown					\frown
					\square		
					Π		
					Η		
					Η		
					Н		
					\square		
					Н		
				\vdash	Н		
					\square		
	U	U	U	U	U	U	

Pond 31.0P: SSF-2

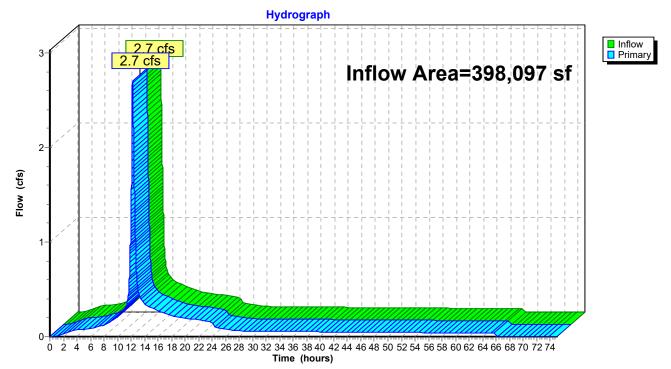


Summary for Link POA-1: POA-1

Inflow Area =	207,220 sf,	5.79% Impervious,	Inflow Depth = 0.52"	for 25-YR event
Inflow =	1.3 cfs @	12.30 hrs, Volume=	8,910 cf	
Primary =	1.3 cfs @	12.30 hrs, Volume=	8,910 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-1: POA-1



Summary for Link POA-2: POA-2

Inflow Area =	398,097 sf,	37.51% Impervious,	Inflow Depth = 0.84"	for 25-YR event
Inflow =	2.7 cfs @	12.23 hrs, Volume=	27,971 cf	
Primary =	2.7 cfs @	12.23 hrs, Volume=	27,971 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

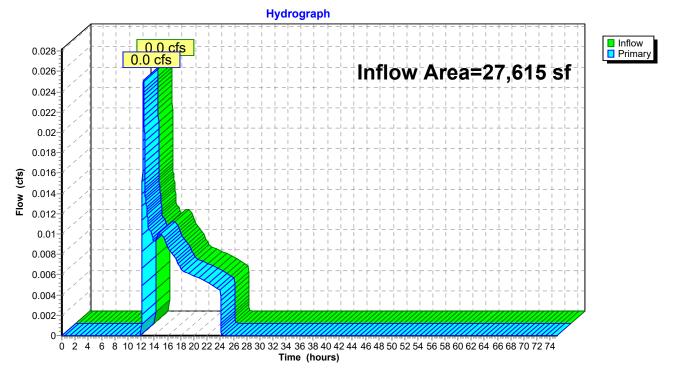
Link POA-2: POA-2

Summary for Link POA-3: POA-3

Inflow Area =	357,985 sf, 60.66% Impervious, Inflow Depth = 0.72" for 25-YR event
Inflow =	0.3 cfs @ 14.14 hrs, Volume= 21,348 cf
Primary =	0.3 cfs $@$ 14.14 hrs, Volume= 21,348 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Hydrograph Inflow Primary 0.3 cfs 0.3 cfs 0.34 Inflow Area=357,985 sf 0.32 0.3 0.28 0.26 0.24 0.22 0.2 Flow (cfs) 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)


Link POA-3: POA-3

Summary for Link POA-4: POA-4

Inflow Area =	27,615 sf,	0.00% Impervious,	Inflow Depth = 0.15 "	for 25-YR event
Inflow =	0.0 cfs @	12.37 hrs, Volume=	336 cf	
Primary =	0.0 cfs @	12.37 hrs, Volume=	336 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-4: POA-4

Appendix 3

Inspection, Maintenance and Housekeeping Plan

INSPECTION, MAINTENANCE, AND HOUSEKEEPING PLAN

For: Franklin Drive Subdivision Multi-Family Development & Commercial Development Windham, ME

By: Sebago Technics, Inc. 75 John Roberts Road, Suite 4A South Portland, Maine

Introduction

The following plan outlines the anticipated inspection and maintenance procedures for the erosion and sedimentation control measures as well as stormwater management facilities for the project. This plan also outlines several housekeeping requirements that shall be followed during and after construction. These procedures shall be followed in order to ensure the intended function of the designed measures and to prevent unreasonably adverse impacts to the surrounding environment.

The procedures outlined in this Inspection, Maintenance and Housekeeping Plan are provided as an overview of the anticipated practices to be used on this site. In some instances, additional measures may be required due to unexpected conditions. For additional detail on any of the erosion and sedimentation control measures or stormwater management devices to be utilized on this project, refer to the most recently revised edition of the "Maine Erosion and Sedimentation Control BMP" manual and/or the "Stormwater Management for Maine: Best Management Practices" manual as published by the Maine Department of Environmental Protection (MDEP).

During Construction

- 1. **Inspection:** During the construction process, it is the Contractor's responsibility to comply with the inspection and maintenance procedures outlined in this section. These responsibilities include inspecting disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. These areas shall be inspected at least once a week as well as before and after a storm event (0.5" of rainfall), and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in any applicable permits, shall conduct the inspections.
- 2. **Maintenance:** All measures shall be maintained in an effective operating condition until areas are permanently stabilized. If Best Management Practices (BMPs) need to be maintained or modified, additional BMPs are necessary, or other corrective action is needed, implementation must be completed within 7 calendar days and prior to any storm event (0.5" of rainfall).
- 3. **Documentation:** A log summarizing the inspections and any corrective action taken must be maintained on-site. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and

maintenance of erosion and sedimentation controls, material storage areas, and vehicle access points to the site. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

4. **Specific Inspection and Maintenance Tasks:** The following is a list of erosion control and stormwater management measures and the specific inspection and maintenance tasks to be performed during construction.

A. <u>Sediment Barriers:</u>

- Hay bale barriers, silt fences, and filter berms shall be inspected immediately after each rainfall and at least daily during prolonged rainfall.
- If the fabric on a silt fence or filter barrier should decompose or become ineffective prior to the end of the expected usable life, and the barrier is still necessary, it shall be replaced.
- Sediment deposits should be removed after each storm event (0.5" of rainfall). They must be removed before deposits reach approximately one-half the height of the barrier.
- Filter berms shall be reshaped as needed.
- Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required should be dressed to conform to the existing grade, prepared, and seeded.

B. <u>Riprap Materials:</u>

- Once a riprap installation has been completed, it should require very little maintenance. It shall, however, be inspected periodically to determine if high flows have caused scour beneath the riprap or dislodged any of the stone.
- C. <u>Erosion Control Blankets:</u>
 - Inspect these reinforced areas semi-annually and after significant rainfall events for slumping, sliding, seepage, and scour. Pay close attention to unreinforced areas adjacent to the erosion control blankets, which may experience accelerated erosion.
 - Review all applicable inspection and maintenance procedures recommended by the specific blanket manufacturer. These tasks shall be included in addition to the requirements of this plan.
- D. <u>Stabilized Construction Entrances/Exits:</u>
 - The exit shall be maintained in a condition that will prevent tracking of sediment onto public rights-of-way.
 - When the control pad becomes ineffective, the stone shall be removed along with the collected soil material. The entrance should then be reconstructed.

- Areas that have received mud-tracking or sediment deposits shall be swept or washed. Washing shall be done on an area stabilized with aggregate, which drains into an approved sediment-trapping device (not into storm drains, ditches, or waterways).
- E. <u>Temporary Seed and Mulch:</u>
 - Mulched areas should be inspected after rain events to check for rill erosion.
 - If less than 90% of the soil surface is covered by mulch, additional mulch shall be applied in bare areas.
 - In applications where seeding and mulch have been applied in conjunction with erosion control blankets, the blankets must be inspected after rain events for dislocation or undercutting.
 - Mulch shall continue to be reapplied until 95% of the soil surface has established temporary vegetative cover.
- F. <u>Stabilized Temporary Drainage Swales:</u>
 - Sediment accumulation in the swale shall be removed once the cross-section of the swale is reduced by 25%.
 - The swales shall be inspected after rainfall events. Any evidence of sloughing of the side slopes or channel erosion shall be repaired, and corrective action should be taken to prevent the reoccurrence of the problem.
 - In addition to the stabilized lining of the channel (i.e., erosion control blankets), stone check dams may be needed to further reduce channel velocity.
- 5. **Housekeeping:** The following general performance standards apply to the proposed project.
 - A. <u>Spill prevention</u>: Controls must be used to prevent pollutants from being discharged from materials on-site, including storage practices to minimize exposure of the materials to stormwater, and appropriate spill prevention, containment, and response planning and implementation.
 - B. <u>Groundwater protection</u>: During construction, liquid petroleum products and other hazardous materials with the potential to contaminate groundwater may not be stored or handled in areas of the site draining to an infiltration area. An "infiltration area" is any area of the site that, by design or as a result of soils, topography, and other relevant factors, accumulates runoff that infiltrates into the soil. Dikes, berms, sumps, and other forms of secondary containment that prevent discharge to groundwater may be used to isolate portions of the site for the purposes of storage and handling of these materials.
 - C. <u>Fugitive sediment and dust</u>: Actions must be taken to ensure that activities do not result in noticeable erosion of soils or fugitive dust emissions during or after construction. Oil may not be used for dust control.
 - D. <u>Debris and other materials</u>: Litter, construction debris, and chemicals exposed to stormwater must be prevented from becoming a pollutant source.
 - E. <u>Trench or foundation dewatering</u>: Trench dewatering is the removal of water from

trenches, foundations, cofferdams, ponds, and other areas within the construction area that retain water after excavation. In most cases, the collected water is heavily silted and hinders correct and safe construction practices. The collected water must be removed from the ponded area, either through gravity or pumping, and must be spread through natural wooded buffers or removed to areas that are specifically designed to collect the maximum amount of sediment possible, like a cofferdam sedimentation basin. Avoid allowing the water to flow over disturbed areas of the site. Equivalent measures may be taken if approved.

Post-Construction

- 1. **Inspection:** After construction, it is the responsibility of the owner or assigned heirs to comply with the inspection and maintenance procedures outlined in this section. All measures must be maintained in an effective operating condition. The owner shall inspect and maintain the BMPs, including but not limited to any parking areas, catch basins, drainage swales, detention basins and ponds, pipes and related structures, in accordance with all municipal and state inspection, cleaning, and maintenance requirements of the approved post-construction stormwater management plan.
- 2. **Specific Inspection and Maintenance Tasks:** The following is a list of permanent erosion control and stormwater management measures and the inspection and maintenance tasks to be performed after construction. If the BMP requires maintenance, repair or replacement to function as intended by the approved post-construction stormwater management plan, the owner or operator of the BMP shall take corrective action(s) to address the deficiency or deficiencies as soon as possible after the deficiency is discovered and shall provide a record of the deficiency and corrective action(s) to the local municipality in the annual report.

A. <u>Vegetated Areas:</u>

- Inspect vegetated areas, particularly slopes and embankments, early in the growing season or after heavy rains (>0.5") to identify active or potential erosion problems.
- Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
- B. <u>Ditches, Swales, and Other Open Channels:</u>
 - Inspect ditches, swales, level spreaders, and other open stormwater channels in the spring, in the late fall, and after heavy rains to remove any obstructions to flow. Remove accumulated sediments and debris, remove woody vegetative growth that could obstruct flow, and repair any erosion of the ditch lining.
 - Vegetated ditches must be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity.
 - Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable.
 - If the ditch has a riprap lining, replace riprap in areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged.

C. <u>Culverts:</u>

- Inspect culverts in the spring, in the late fall, and after heavy rains (>0.5") to remove any obstructions to flow.
- Remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit.
- Inspect and repair any erosion damage at the culvert's inlet and outlet.

D. <u>Removal of Winter Sand:</u>

- Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring.
- Accumulations on pavement may be removed by pavement sweeping.
- Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader or other acceptable method.

E. <u>Underdrained Soil Filters:</u>

- The basin should be inspected semi-annually and following major storm events. Debris and sediment buildup should be removed from the forebay and basin as needed. Any bare area or erosion rills should be repaired with new filter media, seeded, and mulched.
- A legal entity should be established with responsibility for inspecting and maintaining any underdrained filter. The legal agreement establishing the entity should list specific maintenance responsibilities (including timetables) and provide for the funding to cover long-term inspection and maintenance.
- The filter should drain within 24 to 48 hours following a one-inch storm or greater. If the system drains too fast, an orifice may need to be added on the underdrain outlet or may need to be modified if already present.
- Sediment and plant debris should be removed from the pretreatment structure at least annually.
- If mowing is desired, only hand-held string trimmers or push-mowers are allowed on the filter (no tractor), and the grass bed should be mowed no more than 2 times per growing season to maintain grass heights of no less than 6 inches.
- Fertilization of the underdrained filter area should be avoided unless necessary to establish vegetation.
- Harvesting and pruning of excessive growth should be done occasionally. Weeding to control unwanted or invasive plants may also be necessary.
- Maintaining a healthy cover of grass will minimize clogging with fine sediments. If ponding exceeds 48 hours, the top of the filter bed should be rototilled to reestablish the soil's filtration capacity.
- The top several inches of the filter can be replaced with fresh material if water is ponding for more than 72 hours, or the basin can be rototilled, seeded, and mulched. Once the filter is mature, adding new material (a 1-inch to 2-inch cover of mature compost) can compensate for subsidence.

F. <u>Subsurface Sand Filter Chamber System:</u>

- Inspect the site monthly for the first few months after construction. Then inspections can occur on an annual basis, preferably after rain events when clogging will be obvious.
- Make any repairs necessary to ensure the measure is operating properly.
- Regular maintenance is necessary to remove surface sediment, trash, debris, and leaf litter.
- Outlets and chambers need to be cleaned/repaired when drawdown times in the filter exceeds 36 hours.
- In certain cases, layers of sand may need to be replaced every 3 to 5 years.

3. Documentation:

- A. The owner or operator of a BMP or a qualified post-construction stormwater inspector hired by that person, shall, as required by the local municipality, provide a completed and signed certification on a form provided by the local municipality, certifying that the person has inspected the BMP(s) and that they are adequately maintained and functioning as intended by the approved post-construction stormwater management plan, or that they required maintenance or repair, including the record of the deficiency and corrective action(s) taken.
- B. A log summarizing the inspections and any corrective action taken must be maintained. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of controls. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. A sample "Stormwater Inspection and Maintenance Form" has been included as Attachment 1 of this Inspection, Maintenance, and Housekeeping Plan.
- 4. Duration of Maintenance: Perform maintenance as described and required for any associated permits unless and until the system is formally accepted by a municipality or quasi-municipal district, or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system. If a municipality or quasi-municipal district chooses to accept a stormwater management system, or a component of a stormwater system, it must provide a letter to the MDEP stating that it assumes responsibility for the system. The letter must specify the components of the system for which the municipality or district will assume responsibility, and that the municipality or district agrees to maintain those components of the system in compliance with MDEP standards. Upon such assumption of responsibility and approval by the MDEP, the municipality, quasi-municipal district, or association becomes a copermittee for this purpose only and must comply with all terms and conditions of the permit.

ATTACHMENT 1 – STORMWATER INSPECTION AND MAINTENANCE LOG

Franklin Drive Subdivision Multi-Family Development & Commercial Development 20 Franklin Drive Windham, Maine

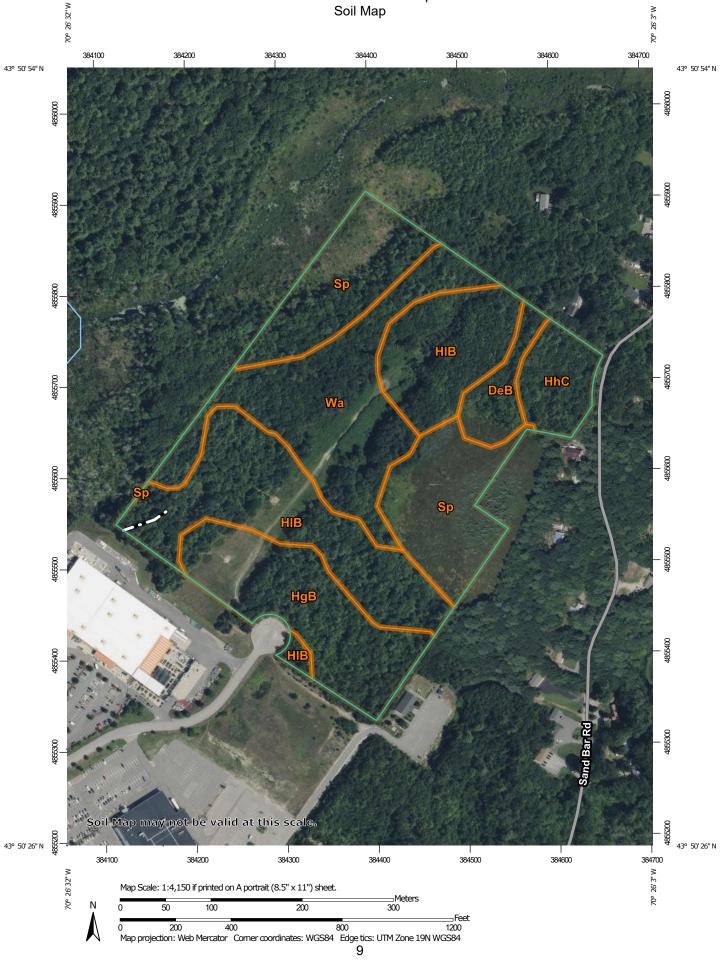
This log is intended to accompany the Inspection, Maintenance, and Housekeeping Plan for the multifamily development located along Franklin Drive in Windham, Maine. The following items shall be checked, cleaned, and maintained on a regular basis as specified in the Maintenance Plan and as described in the sections below. This log shall be kept on file for a minimum of five (5) years and shall be available for review by the Town of Windham and the Maine DEP. Qualified personnel familiar with the drainage systems and soils shall perform all inspections. A copy of the construction and postconstruction maintenance logs is provided.

General Site

	INSPECTION MAINTEN	ANCE AND HOUSEKEEPING FORM	
General Information			
Project Name:		Inspection Date:	
Project Location:		Current Weather:	
		Date / Amount Last Precip:	
BMP Owner:		Company conducting inspection:	
Owner Mailing Address:		Company Mailing Address	
Owner Phone #:		Company Phone #:	
Owner Email:		Inspector Name:	
		Inspector Email:	
Site Element	Suggested Maintenance (recm'd frequency)	Observations	Inspection Notes/Recommended Action
Vegetated Areas	Inspect Slopes/Embankments for erosion (annually)		
	Replant bare areas or areas of sparse growth (annually)		
Ditches/Swales	Remove obstructions/debris/sediment (monthly)		
	Inspect for erosion/repair as needed (annually)		
	Remove woody vegetation (annually)		
	Mow vegetated ditches (annually)		
Catch Basins	Remove sediment/debris from sump (annually)		
	Remove accumulated debris from inlet grate		
Culverts	Remove sediment/debris from inlet/outlet aprons (annually)		
	Inspect inlet/outlet aprons for erosion, repair as needed (annually)		
	Inspect, repair as needed, riprap aprons for dislodged/sparse coverage (annually)		
Pipe Outlets	Remove sediment/debris from outlet aprons (annually)		
	Inspect outlet aprons for erosion, repair as needed (annually)		
Additional Notes/Observat	Inspect, repair as needed, riprap aprons for dislodged/sparse coverage (annually)		

Underdrain Soil Filter

		IANCE AND HOUSEKEEPING FORM	
General Information			
Project Name:		Inspection Date:	
Project Location:		Current Weather:	
		Date / Amount Last Precip:	
BMP Owner:		Company conducting inspection:	
Owner Mailing Address:		Company Mailing Address	
Owner Phone #:		Company Phone #:	
Owner Email:		Inspector Name:	
		Inspector Email:	
BMP Element	Suggested Maintenance (recm'd frequency)	Observations	Inspection Notes/Recommended Action
Forebay/Pretreatment	Sediment/Debris Removal (Annually)		
	Inspect for bare areas or rill erosion (Annually)		
Outlet Control Structure	Sediment Depth (Annually)		
	Floatables/Debris (Annually)		
Discharge Pipe	Ground Stabilized (>1" rain, Annually)		
Emergency Spillway	Review for signs of erosion (Twice Annually)		
	Review for signs of discharge (>1" rain, twice annually)		
Embankments	Review for signs of erosion (Twice Annually)		
Filter Bed	Trim overgrown vegetation with string trimmer (annually)		
	Review basin for evidence of vehicular traffic or storage of snow within footprint (annually)		
	Confirm pond drains in 24-48 hours for water quality volume (annually)		


Subsurface Sand Filter

INSPECTION MAINTENANCE AND HOUSEKEEPING FORM												
General Information												
Project Name:		Inspection Date:										
Project Location:		Current Weather:										
		Date / Amount Last Precip:										
BMP Owner:		Company conducting inspection:										
Owner Mailing Address:		Company Mailing Address										
Owner Phone #:		Company Phone #:										
Owner Email:		Inspector Name:										
		Inspector Email:										
BMP Element	Suggested Maintenance	Observations	Inspection Notes/Recommended Action									
Divir Liement	Suggested Maintenance	Observations	hispection Notes/Recommended Action									
Pretreatment												
	Sediment Depth/Removal (Annually)											
	Scament Deptimentovar (Annuary)											
Outlet Control Structure												
	Sediment Depth (Annually)											
	Floatables/Debris (Annually)											
Discharge Pipe												
	Ground Stabilized (>1" rain, Annually)											
Subsurface Chambers												
Additional Notes/Observatio	Sediment Depth/Removal (Annually)											

Appendix 4

Subsurface Investigations

Custom Soil Resource Report Soil Map

Custom Soil Resource Report

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
DeB	Deerfield loamy fine sand, 3 to 8 percent slopes	1.5	4.0%
НgВ	Hermon sandy loam, 3 to 8 percent slopes	6.1	15.8%
HhC	Hermon sandy loam, 8 to 15 percent slopes, very stony	2.1	5.4%
HIB	Hinckley loamy sand, 3 to 8 percent slopes	12.0	31.2%
Sp	Sebago mucky peat	8.6	22.2%
Wa	Walpole fine sandy loam	8.3	21.4%
Totals for Area of Interest		38.6	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Cumberland County and Part of Oxford County, Maine

DeB—Deerfield loamy fine sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2xfg9 Elevation: 0 to 1,190 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Deerfield and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Outwash deltas, outwash terraces, outwash plains, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap - 0 to 9 inches: loamy fine sand Bw - 9 to 25 inches: loamy fine sand BC - 25 to 33 inches: fine sand Cg - 33 to 60 inches: sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: A Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

HgB—Hermon sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2w9r8 Elevation: 0 to 950 feet Mean annual precipitation: 31 to 65 inches Mean annual air temperature: 36 to 52 degrees F Frost-free period: 90 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Hermon and similar soils: 90 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hermon

Setting

Landform: Mountains, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Mountainbase, interfluve, base slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly supraglacial meltout till derived from granite and gneiss

Typical profile

Ap - 0 to 9 inches: sandy loamBs1 - 9 to 16 inches: very gravelly sandy loamBs2 - 16 to 32 inches: extremely gravelly loamy sandC - 32 to 65 inches: very gravelly coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F144BY601ME - Dry Sand Hydric soil rating: No

HhC—Hermon sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w9rd Elevation: 0 to 1,080 feet Mean annual precipitation: 31 to 65 inches Mean annual air temperature: 36 to 52 degrees F Frost-free period: 90 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Hermon, very stony, and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hermon, Very Stony

Setting

Landform: Mountains, hills
 Landform position (two-dimensional): Summit, shoulder, backslope
 Landform position (three-dimensional): Mountainbase, mountainflank, side slope, nose slope, interfluve
 Down-slope shape: Convex
 Across-slope shape: Convex
 Parent material: Sandy and gravelly supraglacial meltout till derived from granite and gneiss
 Typical profile

Oa - 0 to 2 inches: highly decomposed plant material

E - 2 to 3 inches: sandy loam

Bhs - 3 to 9 inches: sandy loam

Bs1 - 9 to 16 inches: very gravelly sandy loam

Bs2 - 16 to 32 inches: extremely gravelly loamy sand

C - 32 to 65 inches: very gravelly coarse sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.03 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A *Ecological site:* F144BY601ME - Dry Sand *Hydric soil rating:* No

HIB—Hinckley loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svm8 Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Hinckley and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Outwash deltas, outwash terraces, kames, kame terraces, moraines, eskers, outwash plains

- Landform position (two-dimensional): Summit, shoulder, backslope, footslope
- Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Sp—Sebago mucky peat

Map Unit Setting

National map unit symbol: blk0 Elevation: 10 to 2,100 feet Mean annual precipitation: 34 to 48 inches Mean annual air temperature: 37 to 46 degrees F Frost-free period: 80 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Sebago and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sebago

Setting

Landform: Bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Organic material

Typical profile

Oe - 0 to 36 inches: mucky peat *Oi - 36 to 65 inches:* mucky peat

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 6.00 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Very high (about 18.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D Ecological site: F144BY230ME - Acidic Peat Wetland Complex Hydric soil rating: Yes

Wa—Walpole fine sandy loam

Map Unit Setting

National map unit symbol: blk7 Elevation: 0 to 540 feet Mean annual precipitation: 48 to 49 inches Mean annual air temperature: 45 to 46 degrees F Frost-free period: 145 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Walpole and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Walpole

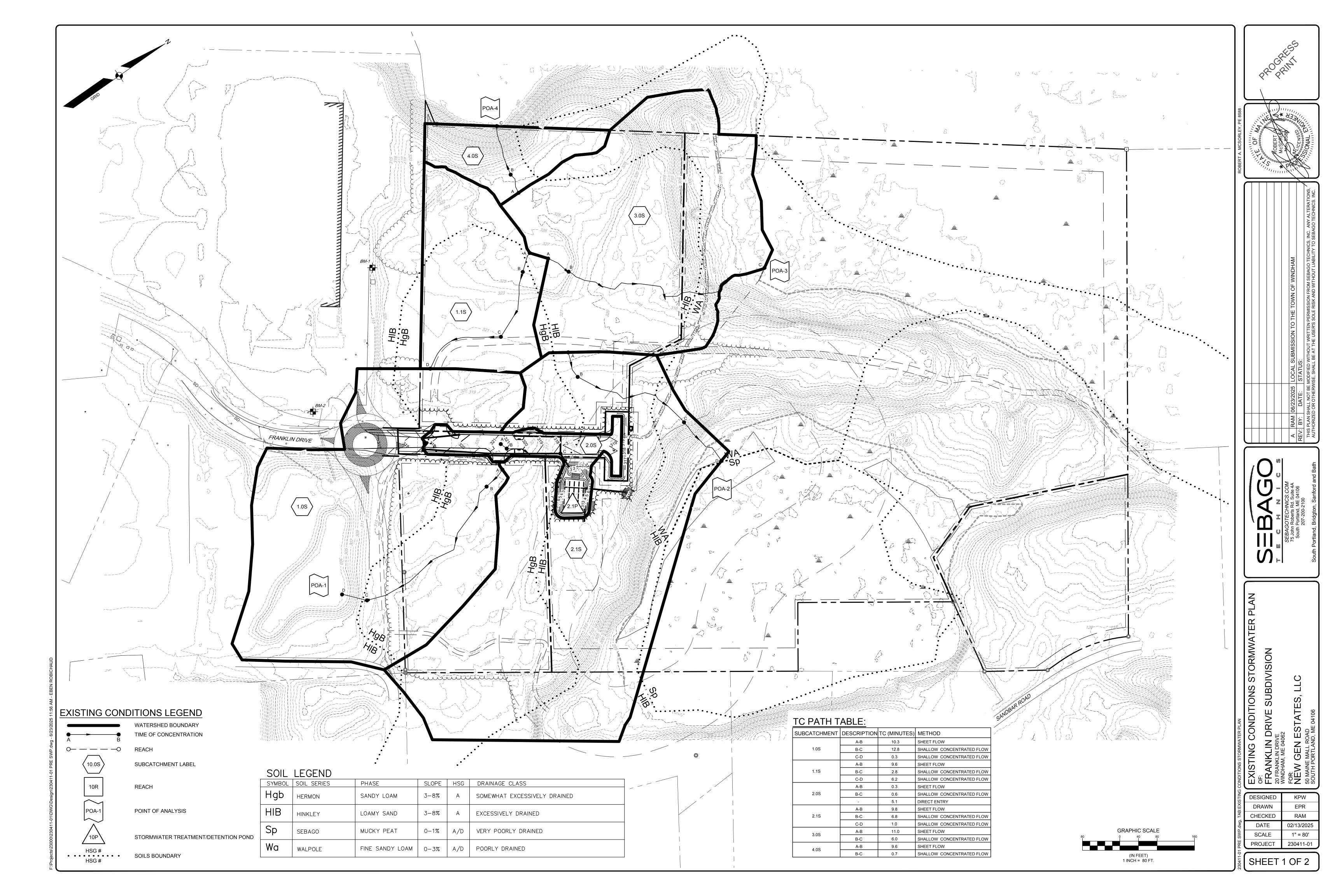
Setting

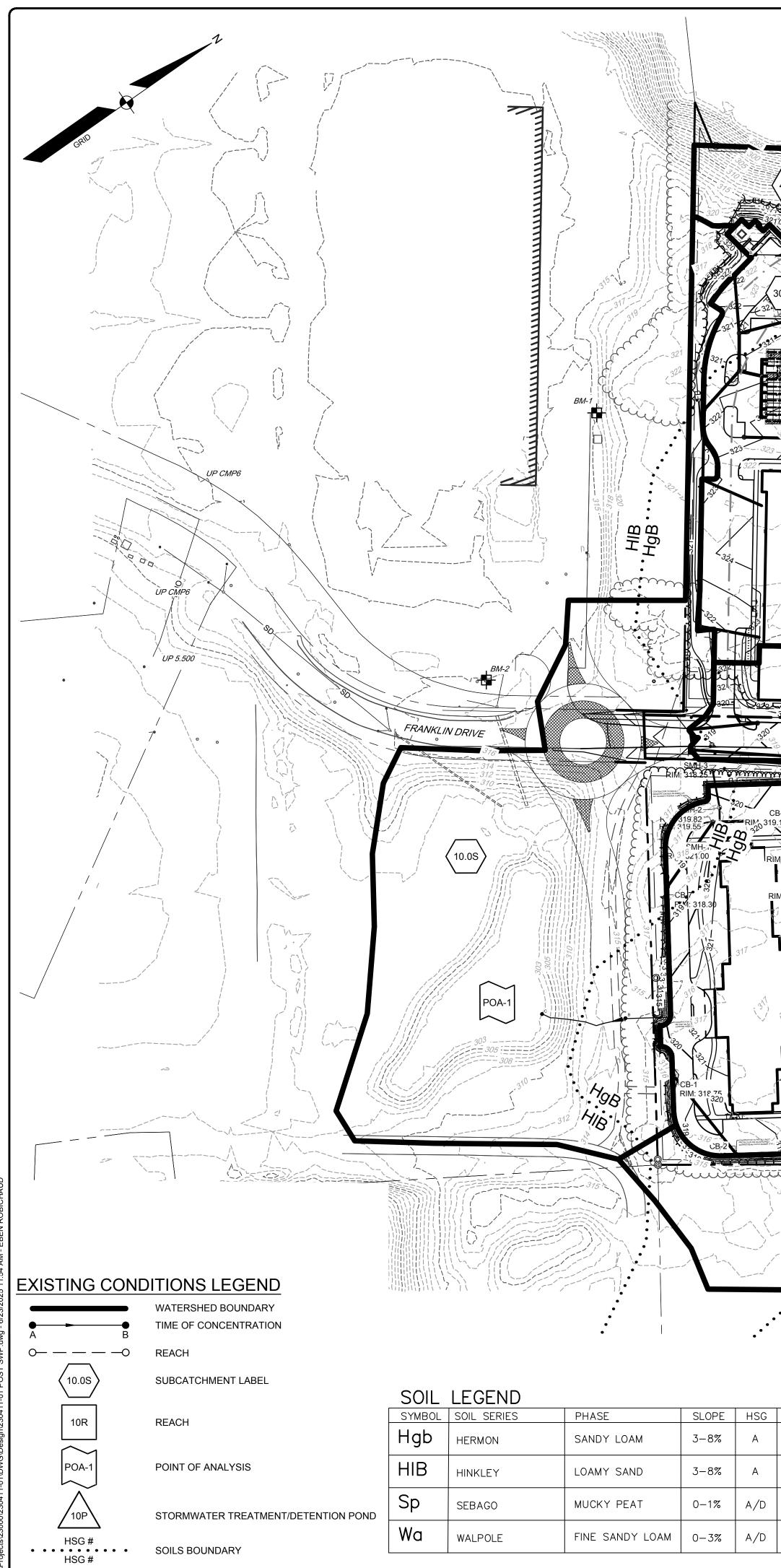
Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy glaciofluvial deposits

Typical profile

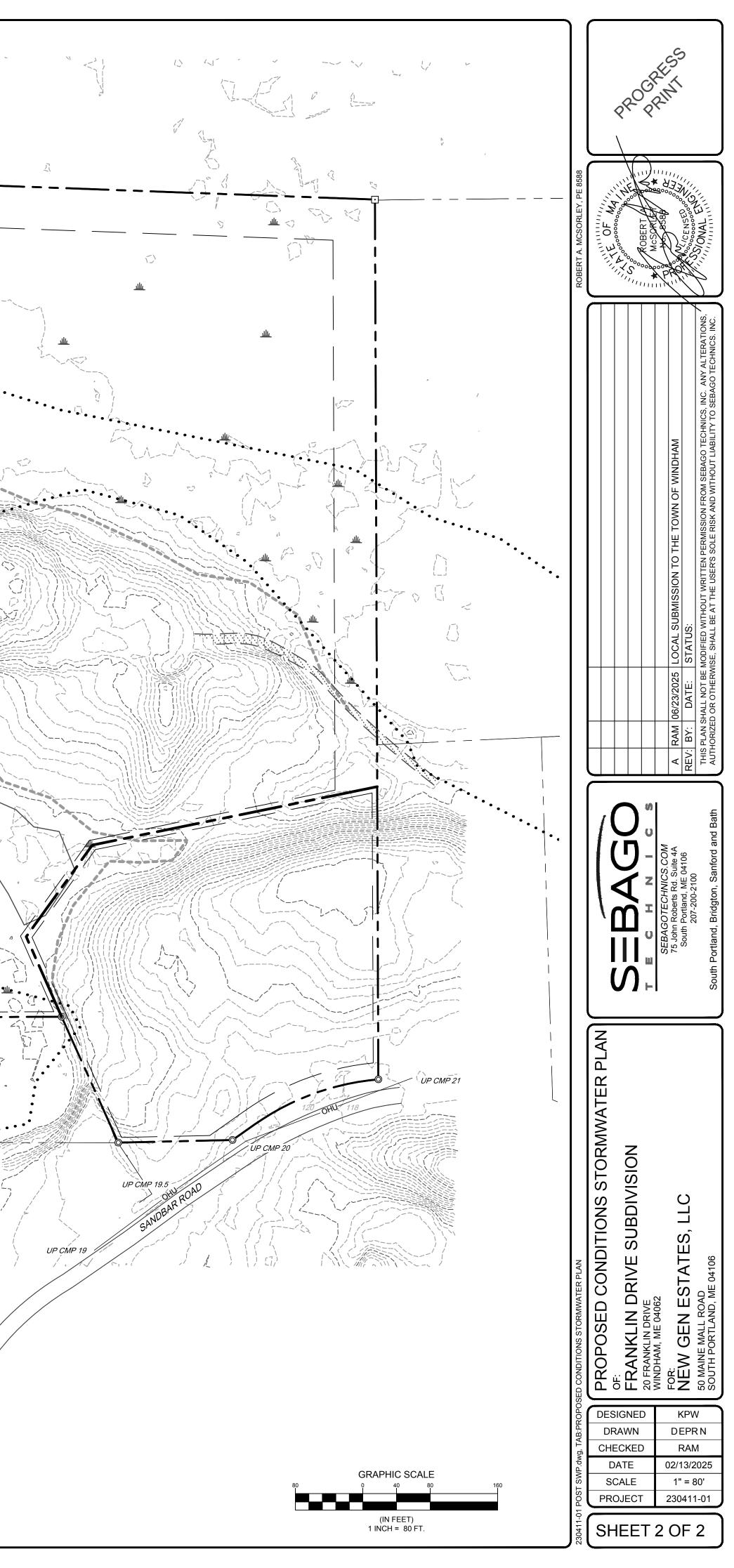
H1 - 0 to 8 inches: fine sandy loam
H2 - 8 to 20 inches: fine sandy loam
H3 - 20 to 65 inches: gravelly loamy sand

Properties and qualities

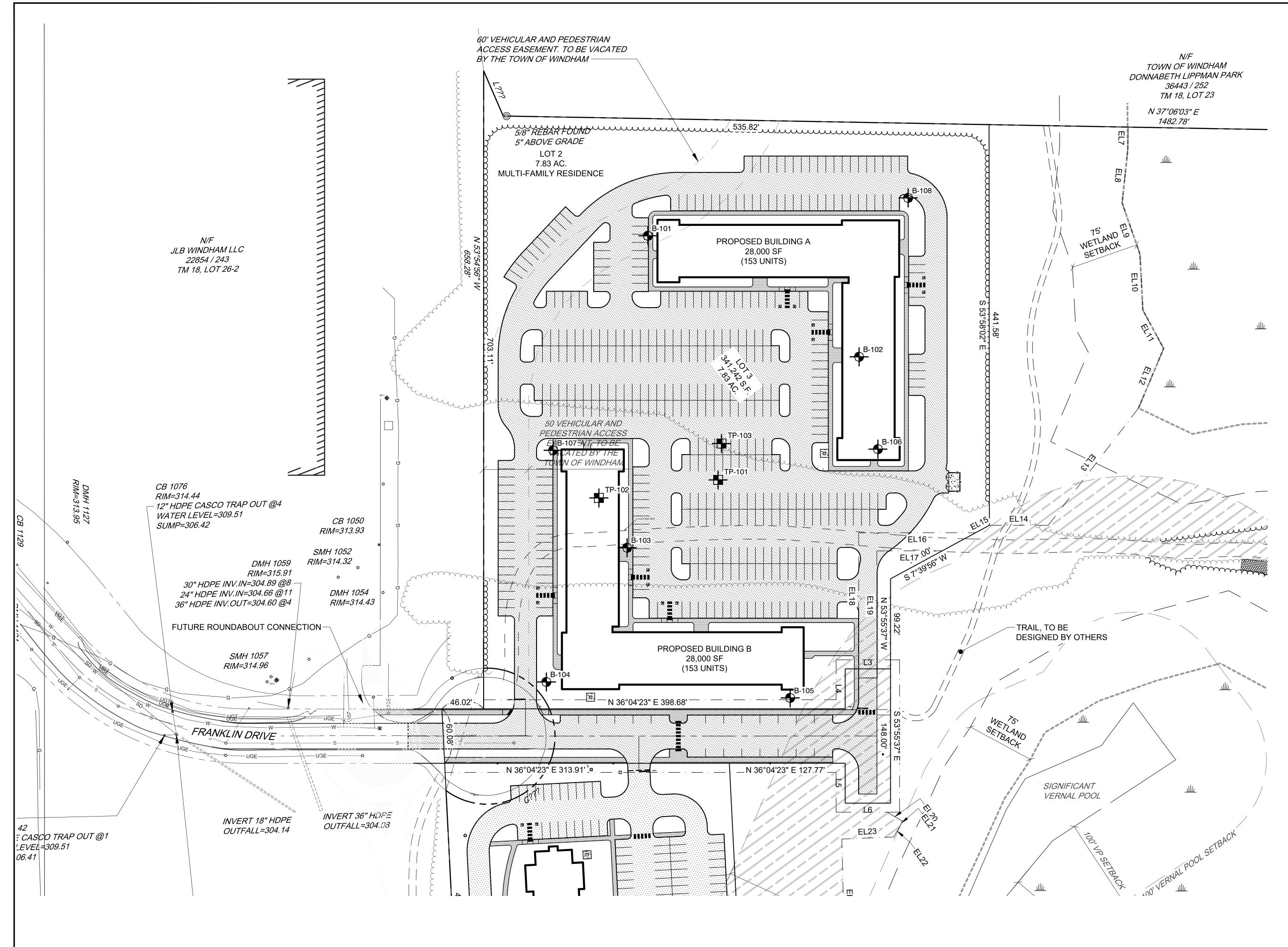

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.7 inches)


Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Ecological site: F144BY303ME - Acidic Swamp Hydric soil rating: Yes


Appendix 5

Stormwater Management Plans



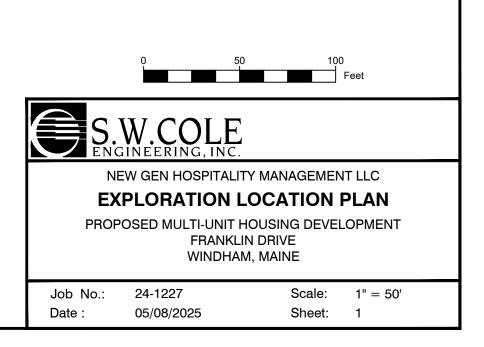
			<u>لــــــــــــــــــــــــــــــــــــ</u>		• ~
295			4		
POA-4					
		•	5>	73	
					Ŷ
40.0S	1 1/12/-5- /				
30.1S		D A			
	30.05	<u></u>			
	30.03				
					/
		POA	-3 2 5		
					ŝ.
223 324 322 322					
	310				
30.3S	315				
	<u>uanda</u>	Lui -	·····		
				······································	
	315				
	305				
		300			
$\begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 321 \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	atte	295			
	NA				
	·Sp				
	POA-2	्रं द	1 station		
RIM: 3: -2-3 320 					
DMH-2 RIM: 321.16 RIM: 22.0S RIM: 316.00	L		<i>'</i> ــــ		
		N V			
			Ĩ		
					•
		Î.			
	1-4-57				(? ^{i_}
		/ _	 	<i>[</i> }	
	·	/	, D	~ ┐ — —	
	TC PATH T	<u> </u>	TC (MINUTES)	METHOD]
	10.0S	A-B B-C	10.3 12.8	SHEET FLOW SHALLOW CONCENTRATED FLOW	
-313		C-D A-B	0.3 0.3	SHALLOW CONCENTRATED FLOW SHEET FLOW	
	20.0\$	B-C - A-B	0.6 5.1 0.3	SHALLOW CONCENTRATED FLOW DIRECT ENTRY	
	21.0S	B-C -	0.6	SHEET FLOW SHALLOW CONCENTRATED FLOW DIRECT ENTRY	
	22.0S	A-B B-C	2.6 1.1	SHEET FLOW SHALLOW CONCENTRATED FLOW	
	30.05	- A-B B-C	5.1 14.7 4.0	DIRECT ENTRY SHEET FLOW SHALLOW CONCENTRATED FLOW	
G DRAINAGE CLASS		C-D A-B	4.0 2.5 2.4	SHALLOW CONCENTRATED FLOW SHALLOW CONCENTRATED FLOW SHEET FLOW	
SOMEWHAT EXCESSIVELY DRAINED	30.1S	B-C -	0.3 3.3	SHALLOW CONCENTRATED FLOW DIRECT ENTRY	
EXCESSIVELY DRAINED	30.25	A-B B-C	0.8 0.2 5.0	SHEET FLOW SHALLOW CONCENTRATED FLOW DIRECT ENTRY	-
D VERY POORLY DRAINED	30.3S	- A-B -	5.0 1.2 4.8	SHEET FLOW DIRECT ENTRY	
D POORLY DRAINED	40.0S	A-B B-C	1.5 0.2	SHEET FLOW SHALLOW CONCENTRATED FLOW	
		-	4.3	DIRECT ENTRY]

Appendix 6

S.W. Cole Report on Site Infiltration

R:\2024\24-1227\CAD\Drawings\24-1227 ELP.dwg, 5/8/2025 1:54:23 PM, CEM, S. W. Cole En_t

LEGEND:



APPROXIMATE BORING LOCATION

APPROXIMATE TEST PIT LOCATION

NOTES:

- EXPLORATION LOCATION PLAN WAS PREPARED FROM A A 1"=80' SCALE PLAN OF THE SITE ENTITLED "CONCEPTUAL MASTER PLAN," PREPARED BY SEBAGO TECHNICS, DATED 01/23/2025.
- 2. THE BORINGS AND TEST PITS WERE LOCATED IN THE FIELD BY S. W. COLE ENGINEERING, INC. USING A MAPPING GRADE GNSS RECEIVER.
- 3. THIS PLAN SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT.
- 4. THE PURPOSE OF THIS PLAN IS ONLY TO DEPICT THE LOCATION OF THE EXPLORATIONS IN RELATION TO THE EXISTING CONDITIONS AND PROPOSED CONSTRUCTION AND IS NOT TO BE USED FOR CONSTRUCTION.

E							E					B-101 1 of 1			
		CLI	ENT: N	lew	/ Gen H	ospitality	Manager	ment LLC						NO.	24-1227
							0	g Developmen	t			-	TE ST		4/23/2025
S.W.C	OLE	LOC	CATION	: <u>F</u>	Franklin	Drive, W	Vindham,	Maine				DA	TE FIN	IISH:	4/23/2025
	ng Info		on Doration	Loc	ation Pl	an	n ELEVATION (FT): 325' +/- TOTAL DEPTH (FT): 40.0 LOG							Kvle K	aserman
	_		board Dr					Ryan Hacket			DRILLING METHOD: Hollow Ster			<u></u>	
RIG T	PE: _T	rack Mo	ounted D	iedr	rich D-50			/OD: 2 1/4 in			SAMPLER: Standard Split-Spoon				
	ER TYP							WEIGHT (lbs):			CASING ID/OD: N/A /N/A	CORE	BARRE	L:	
			ON FAC		-		rated Belo	DROP (inch):	30						
	RAL NO			_		oono outu									
	O NOTES (MBOLS:	⊻ At ▼ At	er <u>Level</u> time of Di Completio ter Drilling	on o									ned Com Angle (Es	pressive	n, kips/sq.ft. Strength, kips/sq.ft.
					SAMP	LE INFO	RMATIO	N	Log						
Elev.	Depth	Casing Pen.	1		Depth	Pen./	Blow Count	Field / Lab	hic Lo		Sample Description &		H₂0 Depth		Remarks
(ft)	(ft)	(bpf)	Sample No.	Ţyp	(ft)	Rec. (in)	or	Test Data	Graphic		Classification				
			1D		0-2	24/6	RQD 4-8-11-				etation/forest duff				
	F			X	<i>. .</i>		7			Med	ium dense, light brown, gravelly SAN	/ D,			
			2D	M	2-4	24/14	8-28- 17-13	w =1.4 %			e silt, with frequent cobbles se, light brown, gravelly SAND, some	oilt			
				Д			17-13				frequent cobbles	Siit,			
320 —	- 5		3D	H	5-7	24/20	26-32-			5.0 Ver	dense, light brown, gravelly SAND,				
-	-		-	Х			29-31				e silt				
				Π											
-	-														
315 —	- 10		4D	H	10-12	24/16	8-16-		<u> </u>	10.0 Den	se, light brown, gravelly SAND, trace	silt			
-	-			М			17-13			with	frequent cobbles	,			
				Π											
-	-														
310 —	- 15		5D	H	15-17	24/10	39-35-		<u> </u>	15.0 Verv	dense, light brown, SAND, some silt				
-	-			М			26-30				e gravel, with frequent cobbles				
-	-														
305 —	- 20		6D	Н	20-22	24/10	12-13-			20.0 Med	ium dense, light brown, gravelly SAN	D,			
-	-			Ň			15-15			trace	e silt, with occasional cobbles	,			
-	-														
300 —	- 25		7D	Н	25-27	24/12	6-6-7-7								
				Ň											
-	_														
295 —	- 30		8D	М	30-32	24/14	5-6-7-8		-	30.0 Med	ium dense, light brown, SAND, some	silt,			
				Ň						trace	e gravel				
	_														
-	-														
290 —	- 35		9D	\square	35-37	24/16	12-11-		\vdash		ium dense to dense, brown, coarse		ĮΫ		
				Ň			4-4				ID, trace silt, trace gravel				
-	-		10D	Н	38-40	24/24	5-12-								
-	-			X	20 10		23-16								
			ent approx pes, trans				1	1	1		Bottom of Exploration at 40.0 feet				
be grad	ual. Wate	r level re	eadings had condition	ave b	been	1									
Fluctuat other fa	ions of gr ctors than	oundwa those p	ter may o present at	ccur	due to	1						PC	RING		B-101
measur	ements w	ere ma	le.			1							UNING	ч О	D-1V1

							B	ORIN	G		G		BORING	NO.:	B-102
' =						anitality	Manager				-		SHEET: PROJEC	-	1 of 1
	7							g Developmer	nt				DATE ST		<u>24-1227</u> 4/23/2025
SWO	COLE						Vindham,		i.				DATE FI	-	4/23/2025
Drilli	ng Info			Loc	cation Pla	n l	ELEVATIC	DN (FT): 319	9' +/-			TOTAL DEPTH (FT): 27.0 L	I OGGED BY:	Kyle ł	Kaserman
DRILL	ING CO.	Sea	board Dr	rillin	g			Ryan Hacke				DRILLING METHOD: Hollow Stem	Auger		
				ied	rich D-50										
	IER TYP		itomatic	TOF	 ۶.			WEIGHT (lbs) DROP (inch):				CASING ID/OD: N/A /N/A C	ORE BARRE	=L:	
WATE		DEPT			-		irated Belo								
	O NOTES YMBOLS:	∑ At ∑ At	er Level time of D Completion ter Drilling	on o	g f Drilling	U = Thin \ R = Rock	Spoon Samı Walled Tube Core Samp Vane Shear	Sample Rec. le bpf =	= Rec Blows	etration overy Le s per Foo te per Fo	ngth ot	WOH = Weight of Hammer q_U = UrRQD = Rock Quality Designation \emptyset = Fri	eld Vane Shea nconfined Com ction Angle (Es Not Applicable	pressive stimated)	Strength, kips/sq.ft.
					SAMPL	E INFO	RMATION	N	Log						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo			Sample Description & Classification	H₂0 Depth		Remarks
			1D	Μ	0-2	24/16	3-3-4-4		- A I	0.3	<u> </u>	tation/forest duff			
	Ţ		2D	Д	2-4	24/14	8-25-			2.0		e, brown, SAND, some silt, trace grave organics	эl, Г		
315 –	+			X	2-4	27/17	43-25			2.0	Very	dense, light brown, gravelly SAND, e silt, with frequent cobbles			
-	- 5 - -		3D	X	5-7	24/20	5-7-11- 18			5.0		um dense, gray-brown, silty SAND, w organics	th		
310 -	- - - 10		4D		10 10 0	11/10	44			10.0					
	+		40	X	10-10.9	11/10	41- 50/5"			10.0	Very trace	dense, gray-brown, gravelly SAND, silt, with frequent cobbles			
305 -	- - 15 -		5D	X	15-17	24/12	3-5-6-5			15.0	Medi SANI	um dense, light brown-gray, gravelly D, trace silt			
300 –	- - - 20		6D	X	20-22	24/12	5-5-6-7			20.0		um dense, light brown-gray, gravelly D, trace silt, with occasional cobbles			
295 –	+											_,,			
	- 25		7D		25-27	24/16	7-5-7-7			25.0	Medi	um dense, light brown, gravelly SAND	<u>,</u> ⊻		
-				Ň							some				
												Bottom of Exploration at 27.0 feet			
bounda	ry betwee	n soil ty	ent approx pes, trans eadings ha	ition	is may										
made a Fluctua	t times ar tions of gi	d under oundwa	r condition ater may o	s sta ccur	ated. due to										
other fa		those p	present at										BORING	NO.:	B-102

							B	ORIN	G	LOG			BORING	NO.: _	B-103
' =					Gen H	osnitality		ment LLC	-				SHEET: PROJEC		1 of 1 24-1227
	フ							g Developmer	nt				DATE S	-	4/23/2025
S.W.	COLE						/indham,						DATE F	-	4/23/2025
Drilli	ing Info	rmati		Loc	ation Pla	an E	ELEVATIC	DN (FT): 321	' +/-		TOTAL DEPTH (FT): 22.0	LC	DGGED BY	: Kyle ł	Kaserman
	LING CO.				<u> </u>			Ryan Hacke			DRILLING METHOD: Hollow		Auger		
	'YPE: <u>⊺</u> MER TYP			iedr	rich D-50			/OD: <u>2 1/4 ir</u> WEIGHT (lbs)			SAMPLER: <u>Standard Split-S</u> CASING ID/OD: N/A /N/A		ORE BARR	CI .	
				TOF	र:			DROP (inch):						EL	
WATE	ER LEVE	L DEP1	THS (ft):	_N	lo Free V	Vater Obs									
	RAL NO														
	O NOTES SYMBOLS:	∑ At ▼ At	<u>er Level</u> t time of Di t Completio fter Drilling	on o		U = Thin V R = Rock	Spoon Sam Valled Tube Core Samp Vane Shear	Sample Rec. = le bpf =	= Rec Blow	etration Length overy Length s per Foot te per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	q _∪ = Uno Ø = Fric		npressive (stimated)	Strength, kips/sq.ft.
					SAMPL	E INFO	RMATION	N	Log						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H₂0 Depth		Remarks
220			1D	M	0-1.5	18/5	3-8-		\boxtimes	Med	ium dense, dark gray / brown, S	SILT AN	ID		
320 -	Ţ		2D	В	2-2.1	1/1	30/6" 50/1"			1.0 \ SAN	ID, with organics (FILL) se, brown, sandy GRAVEL, trac	e silt]		
	+		20		2-2.1	1/1	50/1			with	frequent cobbles				
	+ 5									grav	v dense, brown, SAND, some sil el	t, some			
315 -	ް		3D	X	5-5.5	6/4	50				dense, light brown, coarse SAN el, some silt	ND, som	ne		
	+									grav					
	T 10			Ц	40.40	04/44	00.05			10.0 \/on					
310 -	+		4D	М	10-12	24/14	20-35- 17-10			10.0 Very 11.0	dense, light brown, silty SAND el	, trace	7		
	+			Н						Very	dense, gray-light brown, grave silt, with occasional cobbles	ly SAN	D, '		
	I									liace	e sin, with occasional cooples				
	- 15		5D	H	15-17	24/14	5-6-9-			15.0 Mod	ium dense, light brown, coarse				
305 -	+			Х			12				e silt, trace gravel	SAND,			
	İ			П											
	+														
	- 20		6D	Н	20-22	24/14	9-10-								
300 -				Ň			10-10								
											Bottom of Exploration at 22.0	feet			
bound be gra made	cation line ary betwee dual. Wate at times ar	en soil ty er level r nd unde	/pes, trans eadings ha r condition	ition ave b s sta	s may been ated.										
Fluctua other f	ations of gr actors thar	roundwa 1 those	ater may o present at	ccur	due to								BORING	NO ·	B-103
Stratifi bound be gra made Fluctu other f measu	irements w	ere ma	de.										DOLING	NO	D-103

							E	ORIN	G	LOG			BORING	_	B-104 1 of 1
		CLI	ENT: _!	New	/ Gen H	ospitality	/ Manager	ment LLC					PROJE	-	24-1227
		1.0						g Developmer	nt				DATES		4/23/2025
	COLE			: _	-ranklin	Drive, V	Vindham,	Maine					DATE F	INISH:	4/23/2025
LOCA		See Ex	ploration		ation Pla			DN (FT) : <u>319</u>			TOTAL DEPTH (FT): 22.			r: Kyle	Kaserman
			board Di		g rich D-50			Ryan Hacket		5/8 in	DRILLING METHOD: Ho SAMPLER: Standard Sp		Auger		
								WEIGHT (lbs):			CASING ID/OD: N/A /N/A		ORE BAR	REL:	
			ION FAC					DROP (inch):	30						
	R LEVEI RAL NO		ΗS (π):		lo Free V	vater Ob	served								
	O NOTES YMBOLS:	∑ At ▼ At	er <u>Level</u> time of D Completi	on o		U = Thin R = Rock	Spoon Sam Walled Tube Core Samp Vane Shear	e Sample Rec. = le bpf = l	= Rec Blows	etration Length overy Length s per Foot te per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designat PID = Photoionization Detecto	$q_U = Un$ ion $\emptyset = Friction$		mpressive Estimated	th, kips/sq.ft. Strength, kips/sq.ft)
		_			SAMPL	E INFC	RMATIO	N	6						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log		Sample Description & Classification		H₂0 Dept		Remarks
			1D	M	0-2	24/12	1-5-8-		<u></u>		etation/forest duff				
- - 315 —	+ + +		2D	Å	2-4	24/18	11 24-33- 31-30			2.0 <u>silt, v</u> Very	ium dense, brown, gravelly with occasional cobbles r dense, light brown-white, g ID, some silt, with frequent c	ravelly	ne 		
-	- 5 -		3D	X	5-7	24/16	9-10- 17-46			5.0 Med trace	ium dense, light brown, grav e silt	elly SAND),		
310 — - -	- - 10 -		4D	X	10-12	24/14	5-5-6-5				se to medium dense, light br e silt, trace gravel	own, SANE	D,		
- 305 — - -	- - - 15 -		5D	X	15-17	24/16	3-3-5-5								
- 300 — -	- - 20		6D	X	20-22	24/12	5-6-8-8								
											Bottom of Exploration at 2	2.0 feet			
bounda be grad made a Fluctua other fa	ry betwee ual. Wate t times ar tions of gr	n soil ty r level re nd under roundwa n those p	ent approz pes, trans eadings ha condition ater may o present at de.	ition ave t is sta ccur	s may been ated. due to								BORING	3 NO.:	B-104

E							E	ORIN	G	LO	G		BORING SHEET:		B-105 1 of 1
		CLI	ENT: _N	Vew	/ Gen H	ospitality	/ Manager	ment LLC					PROJEC	T NO.	24-1227
								g Developmer	nt				DATE S	TART:	4/25/2025
S.W.C	COLE	LO	CATION	:_[Franklin	Drive, V	Vindham,	Maine					DATE F	INISH:	4/25/2025
-	ng Info TION: ଃ		on_ ploration	Loc	cation Pl	an	ELEVATIO	DN (FT): 317	7' +/-			TOTAL DEPTH (FT): 27.0 LC	DGGED BY	': Kvle ł	Kaserman
			board Dr					Ryan Hacke				DRILLING METHOD: Hollow Stem		<u></u>	
RIG T	YPE : <u>T</u>	rack M	ounted D	iedı	rich D-50)	AUGER ID/OD: 2 1/4 in / 5 5/8 in SAMPLER: Standard Split-Spoon								
	IER TYP	-						WEIGHT (lbs)		0		CASING ID/OD: N/A /N/A CO	ORE BARR	EL:	
WATE		. DEPT	ION FAC THS (ft):		-		HAMMER urated Belo	DROP (inch):	30						
	O NOTES YMBOLS:	∑ At ∑ At	er Level time of Di Completio ter Drilling	on o		U = Thin R = Rock	Spoon Sam Walled Tube Core Samp Vane Shear	Sample Rec. = le bpf =	= Rec Blows	etration overy Lo per Fo te per F	oot	WOH = Weight of Hammer q_{U} = UnoRQD = Rock Quality Designation \emptyset = Fric		mpressive Estimated)	h, kips/sq.ft. Strength, kips/sq.ft.)
					SAMP	LE INFC	RMATIO	N	Log						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic			Sample Description & Classification	H₂0 Depth	1	Remarks
			1D	М	0-2	24/6	2-3-9-		- A <i>I</i>	0.3	∖ Vege	tation/forest duff			
315 – -	+			Δ			20					um dense, brown, sandy GRAVEL, e silt, with frequent cobbles			
	- 5		20		5-6	12/10	26			5.0-			_		
-	+		2D	А	0-C	12/10	26- 50/6"			0.0		dense, white-light brown, GRAVEL AN , trace silt, with frequent cobbles	ID		
310 -	+											, , I			
-	+														
	10		3D	\square	10-12	24/14	4-5-3-4			10.0		e, light brown, SAND, trace silt, trace			
305 —	+			Д							grave				
-	+														
-	- 15														
			4D	M	15-17	24/12	3-3-4-4			15.0	Loos	e to medium dense, light brown, SANE),		
300 -	+			Д							SOME	Silt			
-	+														
-	+														
-	20		5D	\square	20-22	24/20	5-5-6-5								
295 —	Į			Д											
	+														
-	+														
-	- 25		6D		25-27	24/18	7-6-8-7		-	25.0	Medi	um dense, light brown, SAND, some s	 ilt,		
-290	Ť			Ň							trace	gravel			
290	-		_									Bottom of Exploration at 27.0 feet			
bounda	ry betwee	n soil ty	ent approx pes, trans eadings ha	ition	s may										
made a Fluctua	t times an tions of gr	d under oundwa	r condition ater may o	s sta ccur	ated. due to										
other fa		those p	present at										BORING	NO.:	B-105

							E	BORIN	G	LOG		BORING		B-106 1 of 1
		CLI	ENT: N	Vew	/ Gen H	ospitalitv	Manager	ment LLC				PROJE	_	24-1227
								g Developmer	nt			DATE S	-	4/25/2025
S.W.O	COLE						Vindham,					DATE F	INISH:	4/25/2025
Drilli	ng Info		on ploration	Loc		an l		DN (FT): 318	2' +/_		TOTAL DEPTH (FT): 27.0 L		/· Kyle	Kaserman
			board Dr					Ryan Hacke			DRILLING METHOD: Hollow Stem			
			ounted D		0			/OD: 2 1/4 in		5/8 in	SAMPLER: Standard Split-Spoon			
	IER TYP							WEIGHT (lbs)	-	0	CASING ID/OD: N/A /N/A C	ORE BAR	Rel:	
								DROP (inch):	30					
	RAL NO		п э (II):	<u> </u>	<u>∠</u> 2011 3	sons Salu	irated Belo	JW 20 +/-						
KEY T	O NOTES YMBOLS:	<u>Wate</u> ⊻ At	er Level time of D			U = Thin \		Sample Rec.	= Rec		WOH = Weight of Hammer $q_U = Un$	confined Co	mpressive	th, kips/sq.ft. Strength, kips/sq.ft.
<u> </u>	1		fter Drilling		-	V = Field	Core Samp Vane Shear	mpf =		s per Foot te per Foot		ction Angle (lot Applicab)
					SAMPL	LE INFO	RMATIO	N	- Bo		Sample			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log		Description & Classification	H₂0 Dept		Remarks
			1D	M	0-2	24/6	4-3-3-7		\boxtimes		e, brown, silty SAND, with roots and			
	Į		0.0	Д	0.05	40/0	11.10				nics (FILL)			
315 -	+		2D	Х	2-3.5	18/6	14-16- 50/6"			very	dense, white-brown, gravelly SAND, e silt, with frequent cobbles			
	+										, I			
	5		3D	\square	5-6.5	18/10	8-21- 50/6"				dense, light brown, gravelly SAND,			
	4			Н			50/0			trace	e silt, with occasional cobbles			
310 -	+													
	+													
	10		4D	\square	10-12	24/14	6-6-8-9				ium dense, light brown, coarse SAND,			
	Į			Д						trace	e gravel, trace silt			
305 -	+													
	+													
	- 15		5D	\square	15-17	24/16	5-7-9-9				ium dense, light brown, SAND, trace s	ilt,		
	+			Д						trace	gravel			
300 -	+													
	+													
	20		6D	\square	20-22	24/12	4-5-6-5			^{20.0} Med	ium dense, light brown, SAND, trace s	ilt		
	+			Д										
295 -	+													
	+													
	- 25		7D	M	25-27	24/12	9-7-7-6				ium dense, light brown, gravelly SAND	9, ⊻		
				Μ						liace	,			
											Bottom of Exploration at 27.0 feet			
bounda	ry betwee	n sòil ty	ent approx pes, trans	ition	is may									
be grad made a	lual. Wate at times an	r level n d under	eadings ha	ave l s sta	been ated.									
other fa	ctors than	those p	ater may or present at									BORING		B-106
measu	rements w	ere ma	de.			1							- 110	D-100

								E	BORIN	G	LO	G			RING NO.:	B-107
	CLIENT: New Gen Ho															<u>1 of 1</u> 24-1227
		ナ							g Developme	nt				-	OJECT NO. TE START:	
SW	co							/indham,						- 1	TE FINISH:	4/25/2025
			mati				,							-		
				ploration board Di					DN (FT): 32 Ryan Hacke				TOTAL DEPTH (FT): 27.0 DRILLING METHOD: Hollow Ster		E D BY: <u>Kyle</u> r	Kaserman
				ounted D	-	0			-		5/8 in		SAMPLER: Standard Split-Spoon			
НАМ	MER	TYPE	E: _Au	utomatic										CORE	BARREL:	
				ION FAC					DROP (inch):	30						
	ER LE ERAL			fhs (ft):	_N	lo ⊦ree \	Vater Ob	served								
KEY	TO NO SYMB	TES	<u>Wate</u> ⊻ At ▼ At	<u>er Level</u> time of D t Completi fter Drilling	on of		U = Thin \ R = Rock	Spoon Sam Valled Tube Core Samp Vane Shear	e Sample Rec. le bpf =	= Rec Blows		oot	WOH = Weight of Hammer $q_U = U$ RQD = Rock Quality Designation $\emptyset = F$	Inconfin	ngle (Estimate	e Strength, kips/sq.ft.
						SAMPI	E INFO	RMATIO	N	ŋ						
Elev	. De	pth	Casing				Dars (Blow		c Lo L			Sample		H ₂ 0	
(ft)	(ft)	Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Count or RQD	Field / Lab Test Data	Graphic Log			Description & Classification		Depth	Remarks
	+			1D	M	0-2	24/18	3-27-26		\otimes	1.0		se to medium dense, gray-brown, SIL) SAND, with organics (FILL)	Г		
320	+			2D	(2-3.6	20/16	19-37-			1.0	Very	dense to dense, light brown, gravell	,/		
	+				Д			41- 50/2"				SAN	ID, some silt, with frequent cobbles			
	Ĺ	5														
	+	5		3D	М	5-7	24/0	21-25-								
315	+				А											
	+															
	Ţ	10														
	+			4D	M	10-12	24/14	12-18- 21-18								
310	+				А											
	+															
	Ţ	15				45 47	0.114	7 7 40			15.0-					
	+	10		5D	М	15-17	24/14	7-7-10-			15.0	Med arav	ium dense, light brown, SAND, some rel, trace silt, with occasional cobbles			
305	+				А							9.41				
	+															
	Ţ	20				~~ ~~										
	+	20		6D	М	20-22	24/12	6-8-7-7			20.0		lium dense, light brown, coarse SANI e gravel, trace silt, with occasional),		
300	+				А							cobb				
	t															
	I	25									-25 0-					
	+	20		7D	M	25-27	24/14	6-5-7-7			25.0	Med	lium dense, SAND, trace gravel, trace	silt		
295					V								Bottom of Exploration at 27.0 feet			
i													·			
)																
5																
5																
77																
07-71-																
				ent appro: pes, trans												
be gra	adual. at tim	Water es an	r level r d under	eadings ha	ave b is sta	been ated.										
other	factors	than		ater may o present at										во	RING NO.:	B-107
meas	urenne	IIIS WE		u . .			1							1-2		

							B	ORINO	GI				RING N	0.:	B-108
-													EET:	—	1 of 2
=							0	nent LLC				_ PR	OJECT	NO	24-1227
		PRC	JECT:	_Pr	oposed	Milti-Uni	it Housing	g Developmen	nt			DA	TE STA	RT:	4/25/2025
WC	OLE						/indham,	· · · · · · · · · · · · · · · · · · ·				DA	TE FINI	SH:	4/28/2025
						-, ••						-1-27			
.ocat Rilli Rig Ty Iammi	NG CO.: ′PE: _⊺ı ER TYPI	See Exp Sea ack Mo E: Au	Dioration board Dr bounted D tomatic / ON FAC	illing iedr ⁄ Au	g ich D-50 tomatic	[/ 	DRILLER: AUGER ID HAMMER	N (FT):318 Ryan Hacket /OD:N/A / N WEIGHT (Ibs): DROP (inch):	t I/A : <u>14</u>		DRILLING METHOD: Cased Bori SAMPLER: Standard Split-Spoor	ng	ED BY: BARREL		aserman
VATER		DEPT			2 20 ft S	oils Satu	rated Belo	w 20' +/-		etration Length	WOR = Weight of Rods $S_v = 1$	-ield Va	ne Shear S	Strength	, kips/sq.ft.
AND SY	(MBOLS:	👤 At	time of Dr Completic ter Drilling	on of	Drilling	R = Rock	Valled Tube Core Samp Vane Shear		Blows	overy Length per Foot e per Foot	RQD = Rock Quality Designation \emptyset = F	riction A			Strength, kips/
					SAMPL	E INFO	RMATION	N	Log		Comple				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic I		Sample Description & Classification		H ₂ 0 Depth	F	Remarks
_	_		1D	M	0-2	24/6	2-9-30- 9				etation/forest duff				
-	L			Д							se, brown, SAND, some silt, trace gra occasional cobbles	avel,			
15 —	-														
+	-														
+	- 5		2D	М	5-6.8	22/10	12-19-		<u> </u>		se, brown, gravelly SAND, trace silt,	with			
-				Й			30- 50/4"				uent cobbles				
10 -															
	_														
+	- 10		3D	H	10-12	24/14	21-40-		<u> </u>	10.0	alamaa Balat kuusuu suk 9				
+	-			X	10-12	24/14	35-28			very	dense, light brown-white, gravelly ID, trace silt, with frequent cobbles				
+	-			Ĥ							. , , , ,				
05 —	_														
+	-														
]	— 15 -		4D	\square	15-17	24/10	5-10-9- 9			15.0 Mec	ium dense, light brown-white, gravel	у			
]	_			Д			3			SAN	ID, trace silt, with occasional cobbles				
00 —	_														
+	-														
+	- 20		5D	Н	20-22	24/6	13-11-		<u> </u>	20.0 Mec	ium dense, gray-brown, SAND AND		Σ		
+	-			M			16-15				VEL, trace silt				
05				Ħ											
95 —															
]	- 25		6D	Ц	25-27	24/0	5566			25.0					
-	_			X	20-21	24/8	5-5-6-6			iviec	ium dense, gray-brown, gravelly SAN e silt	۱D,			
+	-			Н											
90 —	-														
+	-														
_	— 30 -		7D	М	30-32	24/8	6-7-6-7				ium dense, gray-brown, gravelly SAN	ND,			
]				Д						trac	e silt, with occasional cobbles				
85 —	-														
+	-														
+	- 35		8D	Н	35-37	24/6	6-5-8-8		<u> </u>	35.0 Mec	ium dense, gray-brown, SAND AND				
+	-			M							VEL, trace silt, with occasional cobb	les			
	-			H											
80 -															
								<u> </u>							
			ent approx pes, transi								(Continued Next Page)				
e gradu	ual. Wate	r level re	eadings ha	ave b	een										
	ions of gr	oundwa	ter may or	ccur	due to										B-108
	tore than												RING N		

CLIENT: New Gen Hospitality Management LLC PROJECT N PROJECT : Proposed Milt-Unit Housing Development Date Finis LOCATION: Franklin Drive, Windham, Maine Sample Hubble Proposed Milt-Unit Housing Development Date Finis Elev. (ft) Depth (ft) Casing Pen, (ft) Sample (ft) Depth (ft) Pen, (ft) Blow or RQD Field / Lab Field / Lab Sample (ft) Hubble Hubble 275 445 9D 40.42 24/10 6-18-8-8 8 40.0 Medium dense, gray-brown, gravelly SAND, trace silt, with occasional cobbles Hubble 275 45 10D 45-47 24/10 8-10-14-14 45.0 Medium dense, light brown, gravelly SAND, trace silt 276 50 11D 50-52 24/3 8-6-13-20 55.0 Medium dense, light brown, gravelly SAND, 56.0 Some silt, trace gravel 260 12D 55-57 24/12 11-12-9-8 55.0 Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel 260 12D 55-57 24/12 11-12-9-8 55.0 Medium dense, light brown-gray, SILT, some <th>TART: 4/25/202 NISH: 4/28/202</th>	TART: 4/25/202 NISH: 4/28/202
LOCATION: Franklin Drive, Windham, Maine DATE FINIS Sample (t) Casing Pen (bp) Sample gen (t) Depth (t) Reduction of the pen (t) Pen / Reduction of the pen (t) Blow Count of the pen (t) Field / Lab Test Data Description & Classification High Description & Classification 75 45 9D 40-42 24/10 6-18-8-8 40.0 Medium dense, gray-brown, gravelly SAND, trace silt, with occasional cobbles 76 45 10D 45-47 24/10 8-10-14-14 45.0 Medium dense, light brown, gravelly SAND, trace silt 65 50 11D 50-52 24/3 8-6-13-20 56.0 Medium dense, light brown-gray, SAND, 56.0 56.0 65 55 12D 55-57 24/12 11-12-9-8 55.0 Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel	NISH: 4/28/202
SAMPLE INFORMATION ilev. Depth Casing Sample Depth Pen./ (ft) Blow (ft) Field / Lab or (RQD Dog Test Data Sample Sample H ₂ 0 75 45 9D 40-42 24/10 6-18-8- 8 40.0 Medium dense, gray-brown, gravelly SAND, trace silt, with occasional cobbles H ₂ 0 75 45 10D 45-47 24/10 8-10- 14-14 45.0 Medium dense, light brown, gravelly SAND, trace silt 45.0 70 50 11D 50-52 24/3 8-6-13- 20 56.0 Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel Medium dense, light brown-gray, SAND,	
Iev. (ft) Depth (ft) Casing Pen. (bpf) Sample Sample No. Depth (ft) Pen./ (ft) Blow Rec. (in) Field / Lab Test Data Sample Description & Classification H ₀ . Description & Classification 75 40.42 24/10 6-18-8- 8 6-13- 20 40.0 Medium dense, gray-brown, gravelly SAND, trace silt, with occasional cobbles H ₀ .0 76 45 10D 45-47 24/10 8-10- 14-14 45.0 Medium dense, light brown, gravelly SAND, trace silt Medium dense, light brown, gravelly SAND, trace silt 70 50 11D 50-52 24/12 11-12- 9-8 55.0 Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel Medium dense, light brown-gray, SILT, some	Remarks
9D 40-42 24/10 6-18-8-8 40.0 Medium dense, gray-brown, gravelly SAND, trace silt, with occasional cobbles 75 45 10D 45-47 24/10 8-10-14-14 45.0 Medium dense, light brown, gravelly SAND, trace silt 70 45 10D 45-47 24/10 8-10-14-14 45.0 Medium dense, light brown, gravelly SAND, trace silt 70 50 11D 50-52 24/3 8-6-13-20 55.0 Medium dense, light brown, gravelly SAND, trace silt 65 55 12D 55-57 24/12 11-12-9-8 55.0 Medium dense, light brown-gray, SAND, some silt, trace gravel Medium dense, light brown-gray, SAND, some silt, trace gravel Medium dense, light brown-gray, SAND, some silt, trace gravel 56.0 Medium dense, light brown-gray, SAND, some silt, trace gravel	Remarks
45 10D 45-47 24/10 8-10- 14-14 70 45 10D 45-47 24/10 8-10- 14-14 70 50 11D 50-52 24/3 8-6-13- 20 65 55 12D 55-57 24/12 11-12- 9-8	
45 10D 45-47 24/10 8-10- 14-14 0 45 10D 45-47 24/10 8-10- 14-14 5 50 11D 50-52 24/3 8-6-13- 20 5 55 12D 55-57 24/12 11-12- 9-8 56.0 Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel Medium dense, light brown-gray, SAND, 56.0	
- 50 11D 50-52 24/3 8-6-13-20 5 - - 55 12D 55-57 24/12 11-12-9-8 56.0 some silt, trace gravel - - - - Medium dense, light brown-gray, SAND, 56.0 Some silt, trace gravel - -	
- 55 12D 55-57 24/12 11-12- 9-8 55.0 Medium dense, light brown-gray, SAND, 56.0 some silt, trace gravel Medium dense, light brown-gray, SILT, some	
60 13D 60-62 24/14 12-12- 14-13 60.0 Medium dense, light brown-gray, SILT AND SAND, with layers of sandy silt	
Bottom of Exploration at 62.0 feet	

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.: B-108

S.W.COLE

TEST PIT LOGS

CLIENT: New Gen Hospitality Management LLC

PROJECT: Proposed Milti-Unit Housing Development

PROJECT NO.: 24-1227 LOGGED BY: Evan Walker CONTRACTOR: Seaboard Drilling EQUIPMENT:

S.W.COLE LOCATION: _Franklin Drive, Windham, Maine								
DATE: <u>4/28/</u> WATER LEVEL	TEST PIT TP-101 2025 LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 321' +/- DEPTHS (FT): No Free Water Observed REMARKS:		COMPL	ETIC	ON DEPTH	l (FT): <u>9.0</u>		
	Stratum Description	H₂0 Depth	Sample No.	Type	Sample Depth (ft)	Field / Lab Test Data		
	Vegetation / Dark gray-brown sandy silt with organics (FILL) 1.0 Brown, SAND AND GRAVEL, trace silt, with frequent cobbles Guelph Permeameter Test @ 6': Unsaturated Infiltration Rate = 18.7 in / hr					w =6.4 %		
DATE: 4/28/	Bottom of Exploration at 9.0 feet TEST PIT TP-102 2025 LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 321' +/-		COMPI	ETIC		l (FT) : 3.0		
WATER LEVEL		H ₂ 0 Depth	Sample No.		Sample Depth	Field / Lab Test Data		
	Vegetation / Dark brown silty SAND, with organics (FILL)				(ft)			
	^{1.0} Brown, sandy GRAVEL, trace silt, with frequent cobbles							
	Bottom of Exploration at 3.0 feet							
soil types, transit have been made Fluctuations of g	s represent approximate boundary between ions may be gradual. Water level readings at times and under conditions stated. roundwater may occur due to other factors nt at the time measurements were made.	ket Penetro	meter Stre	ngth,	kips/sq.ft.			

		PRO	ENT: <u>New Gen Hospitality N</u> JECT: <u>Proposed Milti-Unit</u> CATION: <u>Franklin Drive, Wil</u>	lanagement LLC Housing Develop			LC CC Se	DGGE DNTF eaboa	ECT NO.: _ ED BY: RACTOR: ard Drilling MENT:	Evan Walker
	DATE: <u>4/28/</u> WATER LEVEL		_ LOCATION: <u>See Explora</u> HS (FT): No Free Water Ot	tion Location Plan	ST PIT TP-103 SURFACE ELEVATION (FT): REMARKS:	323' +/-	COMPL	ETIO	N DEPTH	(FT): <u>4.0</u>
		Fog			Description	H ₂ 0 Depth	Sample No.	Type	Sample Depth (ft)	Field / Lab Test Data
_	-		Forest Duff / Dark b	rown silty SAND,	with organics (FILL)					
-		***	2.0 Brown, SAND AND	GRAVEL, trace s	silt, with frequent cobbles					
_				Bottom of Expl	oration at 4.0 feet					
_										
25										
3DT 5/27/2										
EMPLATE.(
SWCE TE										
-1227.GPJ										
TEST PIT 24-1227.GPJ SWCE TEMPLATE.GDT 5/27/25	soil types, transit have been made Fluctuations of g	ions ma at times roundwa	sent approximate boundary between ay be gradual. Water level readings s and under conditions stated. ater may occur due to other factors e time measurements were made.	KEY TO NOTES AND SYMBOLS:	<u>Water Level</u>	q _p = Pocket Penetro	meter Stre	ngth,	kips/sq.ft.	

KEY TO NOTES & SYMBOLS Test Boring and Test Pit Explorations

All stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

- w water content, percent (dry weight basis)
- qu unconfined compressive strength, kips/sq. ft. laboratory test
- S_v field vane shear strength, kips/sq. ft.
- L_v lab vane shear strength, kips/sq. ft.
- q_p unconfined compressive strength, kips/sq. ft. pocket penetrometer test
- O organic content, percent (dry weight basis)
- W_L liquid limit Atterberg test
- W_P plastic limit Atterberg test
- WOH advance by weight of hammer
- WOM advance by weight of man
- WOR advance by weight of rods
- HYD advance by force of hydraulic piston on drill
- RQD Rock Quality Designator an index of the quality of a rock mass.
- γ_T total soil weight
- $\gamma_{\rm B}$ buoyant soil weight

Description of Proportions:

Description of Stratified Soils

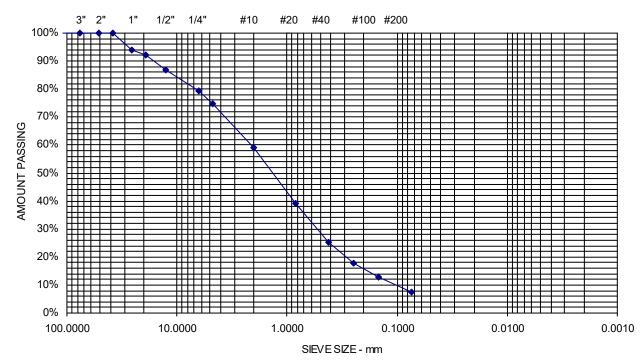
		Parting:	0 to 1/16" thickness
Trace:	0 to 5%	Seam:	1/16" to 1/2" thickness
Some:	5 to 12%	Layer:	1/2" to 12" thickness
"Y"	12 to 35%	Varved:	Alternating seams or layers
And	35+%	Occasional:	one or less per foot of thickness
With	Undifferentiated	Frequent:	more than one per foot of thickness

REFUSAL: <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: <u>Test Pit Explorations</u> - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

Report of Gradation


ASTM C-117 & C-136

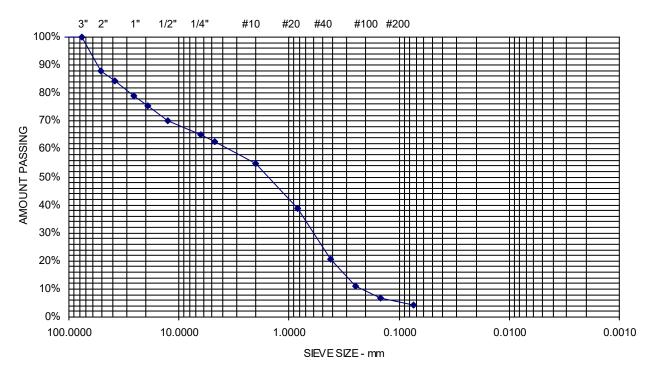
Project Name	WINDHAM ME - PROPOSED MULTI-UNIT HOUSING
	DEVELOPMENT - PRELIMINARY GEOTECHNICAL ENGINEERING
Client	NEW GEN HOSPITALITY MANAGEMENT, LLC

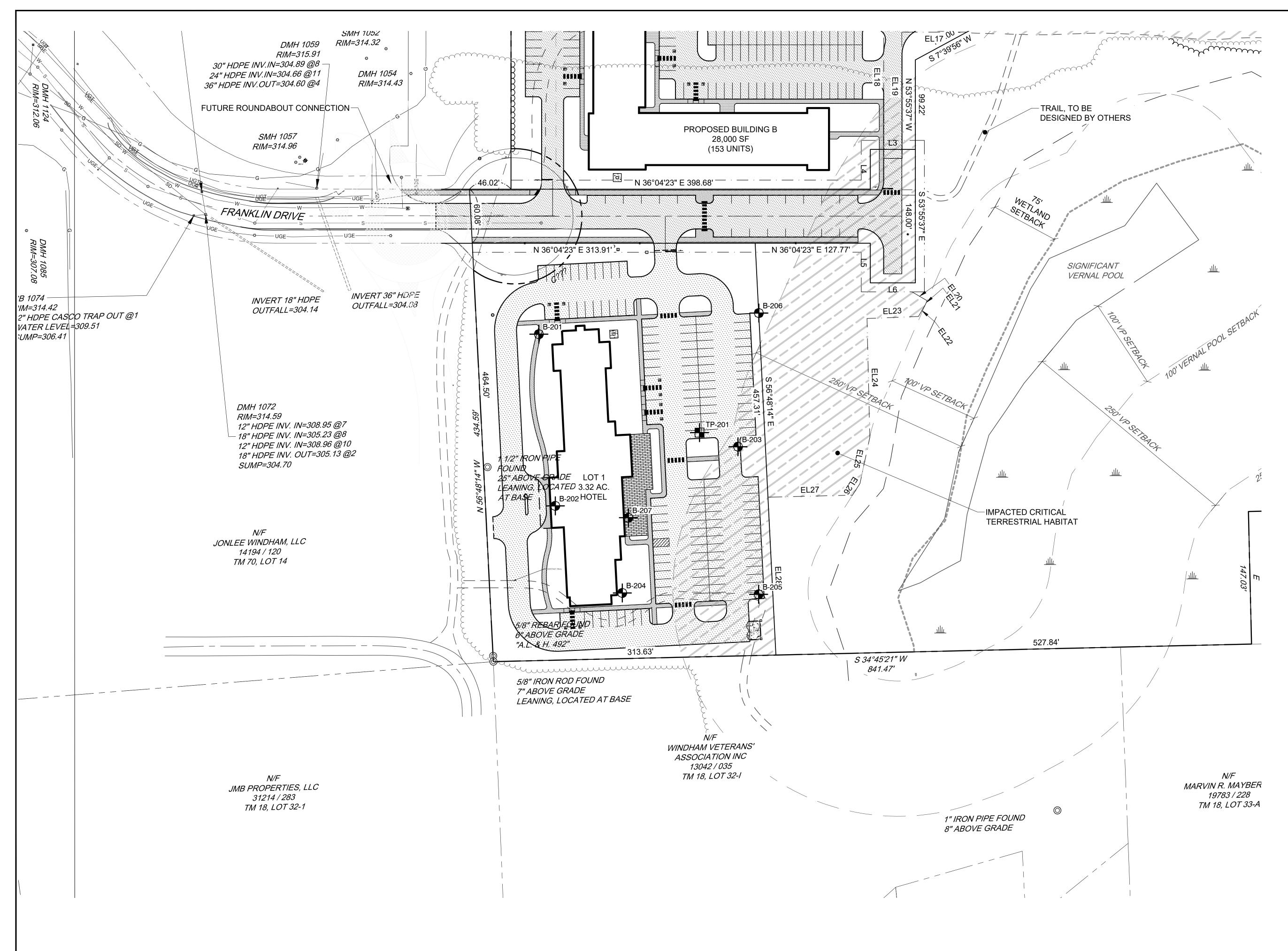
Project Number	24-1227
Lab ID	32988G
Date Received	5/1/2025
Date Completed	5/5/2025
Tested By	NAOMI MCMILLEN

Material Source B-101, 2D, 2-4

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	L
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	94	
19.0 mm	3/4"	92	
12.5 mm	1/2"	87	
6.3 mm	1/4"	79	
4.75 mm	No. 4	75	25.3% Gravel
2.00 mm	No. 10	59	
850 um	No. 20	39	
425 um	No. 40	25	67% Sand
250 um	No. 60	18	
150 um	No. 100	13	
75 um	No. 200	7.6	7.6% Fines

Report of Gradation


ASTM C-117 & C-136


Project Name	WINDHAM ME - PROPOSED MULTI-UNIT HOUSING
	DEVELOPMENT - PRELIMINARY GEOTECHNICAL ENGINEERING
Client	NEW GEN HOSPITALITY MANAGEMENT, LLC

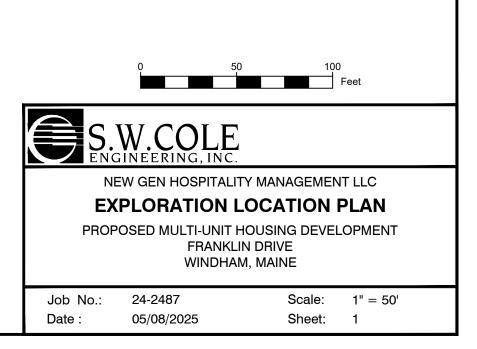
Material Source TP-101, 6-7

Project Number	24-1227
Lab ID	32989G
Date Received	5/1/2025
Date Completed	5/7/2025
Tested By	LEAH YOUNGE

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%	<u>)</u>
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	88	
38.1 mm	1-1/2"	84	
25.0 mm	1"	79	
19.0 mm	3/4"	75	
12.5 mm	1/2"	70	
6.3 mm	1/4"	65	
4.75 mm	No. 4	63	37.4% Gravel
2.00 mm	No. 10	55	
850 um	No. 20	39	
425 um	No. 40	21	58.3% Sand
250 um	No. 60	11	
150 um	No. 100	7	
75 um	No. 200	4.3	4.3% Fines

R:\2024\24-2487\CAD\Drawings\24-2487 ELP.dwg, 5/8/2025 1:59:29 PM, CEM, S. W. (

LEGEND:


◆

APPROXIMATE BORING LOCATION

APPROXIMATE TEST PIT LOCATION

NOTES:

- EXPLORATION LOCATION PLAN WAS PREPARED FROM A A 1"=80' SCALE PLAN OF THE SITE ENTITLED "CONCEPTUAL MASTER PLAN," PREPARED BY SEBAGO TECHNICS, DATED 01/23/2025.
- 2. THE BORINGS AND TEST PITS WERE LOCATED IN THE FIELD BY S. W. COLE ENGINEERING, INC. USING A MAPPING GRADE GNSS RECEIVER.
- 3. THIS PLAN SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT.
- 4. THE PURPOSE OF THIS PLAN IS ONLY TO DEPICT THE LOCATION OF THE EXPLORATIONS IN RELATION TO THE EXISTING CONDITIONS AND PROPOSED CONSTRUCTION AND IS NOT TO BE USED FOR CONSTRUCTION.

	\sim						В	ORIN	G	LOG		BORING SHEET:	NO.: _	B-201 1 of 1
		CLIEI	NT: N	lew	Gen H	ospitality	Manager	nent LLC				PROJEC	T NO.	24-2487
		PROJ	IECT:	Pr	oposed							DATE ST		4/24/2025
S.W	COLE		ATION	: _F	ranklin	Drive, W	/indham,	Maine				DATE FI	NISH: _	4/24/2025
LOC	ing Infor Ation: _s	ee Explo	oration					N (FT): 318				OGGED BY:	: Kyle ł	Kasernan
	LING CO.: FYPE: Tr							Ryan Hacke /OD: 2 1/4 in		5/8 in	DRILLING METHOD: Hollow Stem SAMPLER: Standard Split-Spoon	Auger		
	MER TYPI			leui				WEIGHT (lbs)				ORE BARR	EL:	
	MER COR							DROP (inch):	30					
	ER LEVEL ERAL NOT		IS (ft):	_N	o Free \	Vater Ob	served							
KEY	TO NOTES SYMBOLS:	<u>Water</u> ∑ At tir ▼ At C	me of Di	on of		U = Thin V R = Rock	Spoon Sam Valled Tube Core Samp /ane Shear	Sample Rec. bpf =	= Rec Blows	etration Length overy Length s per Foot te per Foot	WOH = Weight of Hammer $q_U = Ur$ RQD = Rock Quality Designation \emptyset = Fri		npressive stimated)	Strength, kips/sq.ft.
					SAMP	LE INFO	RMATIO	N	ŋ					
Elev (ft)	. Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log		Sample Description & Classification	H ₂ 0 Depth		Remarks
			1D	М	0-2	24/14	1-4-9-8				etation/forest duff (FILL)			
315	+		2D	Å	2-4	24/22	23-19- 31-31	w =2.9 %		2.0 (FILI	se, gray- brown, gravelly SAND, trace	silt		
	- 5		3D	Ĥ	5-7	24/16	14-14-				se, light brown, gravelly SAND, some	silt,		
	+		00	X	01	24/10	14-14			Med	frequent cobbles ium dense, light brown, gravelly SANE e silt, with occasional cobbles),		
310	+									5011				
	- 10		4D	H	10-12	24/16	5-7-8-8			10.0 Med	ium dense to loose, light brown, SANE)		
	+			Д						som	e silt, trace gravel	,		
305	+													
	- 15 -		5D	M	15-17	24/16	4-4-5-4							
300	+			Π										
	+ - 20		6D		20-22	24/16	3-4-4-6			20.0 1 000	se, light brown, fine SAND, some silt			
	+		02	X	20 22	2 1/10				LUOS				
											Bottom of Exploration at 22.0 feet			
	ication lines					1								
bound be gra made	lary betweer adual. Water at times an	l soil type level rea d under c	es, transi dings ha ondition	itions ave b s sta	s may een ited.									
Fluctu	ations of gro factors than urements w	oundwate those pre	r may oo esent at	ccur	due to							BORING	NO.:	B-201

							B	BORIN	G	LOG		BORING SHEET:	NO.:	B-202
					Con H	ospitality Management LLC							T NO.	1 of 1 24-2487
	7						wanayei					DATE ST	_	4/24/2025
SW	COLE						/indham,	Maine				DATE FI	_	4/24/2025
	ng Info			_		·								
LOCA	TION: S	See Exp	oloration					DN (FT): 317		• •	OGGED BY:	Kyle K	asernan	
	ING CO.:				•			Ryan Hacke			DRILLING METHOD: Hollow Stem	Auger		
	YPE: <u>Tr</u> IER TYPI			ledi	ich D-50			VOD: 2 1/4 ir WEIGHT (lbs)			SAMPLER: <u>Standard Split-Spoon</u> CASING ID/OD: N/A /N/A CO		=1 ·	
	IER COR			TOF	ર :			DROP (inch):						
							rated Belo	ow 25' +/-						
	RAL NOT												0	
	O NOTES YMBOLS:	∑ At ∑ At	er <u>Level</u> time of Dr Completio ter Drilling	on o		U = Thin V R = Rock	Spoon Sam Valled Tube Core Samp Vane Shear	e Sample Rec. = le bpf =	= Rec Blows	etration Length overy Length s per Foot te per Foot	WOH = Weight of Hammer q_U = Un RQD = Rock Quality Designation \emptyset = Fric		npressive stimated)	Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	bc					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log		Sample Description & Classification	H ₂ 0 Depth		Remarks
			1D	M	0-2	24/10	4-14-9-				etation/forest duff			
315 —	Ţ		0.0	Й	.	0.4/4.0	13			Medi	um dense, light brown, sandy GRAVE silt, with frequent cobbles	L,		
-	+		2D	M	2-4	24/16	10-16- 26-24			Dens	se, light brown, SAND AND GRAVEL,			
-	+			H							silt, with frequent cobbles			
-	- 5		3D	М	5-7	24/0	13-17-							
310 -	Ţ			Д			24-28							
-	-													
-	+													
-	10		4D	М	10-12	24/0	6-5-6-4				um dense, light brown, fine SAND, sor	ne		
305 —	+			Д						silt				
-	+													
-	+													
-	- 15		5D	М	15-17	24/20	5-7-9-9							
300 —				Д										
-	+													
-	+													
-	20		6D	М	20-22	24/18	5-6-7-8			20.0 Medi	um dense, light brown SAND, some si	It		
295 —	4			Д										
-	+													
-	+											⊻		
-	- 25		7D	M	25-27	24/16	4-5-4-5			25.0 Loos	e, brown, SAND, some silt	<u> </u>		
290 —				Д										
-	+													
-														
-	- 30 -		8D	\square	30-32	24/24	2-3-4-6							
285				\mathbb{N}							Bottom of Exploration at 32.0 feet			
											Dottom of Exploration at 52.0 leel			
	ation lines													
be grad	ry betwee lual. Wate it times an	r level re	eadings ha	ave b	been									
Fluctuat other fa	tions of gr ctors than	oundwa those p	ter may or	ccur	due to							BORING	NO ·	B-202
measur	rements w	ere ma	de.									BURING	NU	D-2V2

							В	ORIN	G	LOG	;		BORING	NO.: _	B-203	
		CU 1	=NT· N		(Gon H	nenitality							SHEET: PROJEC		1 of 1 24-2487	
	7															
SW	OLE					Drive, Windham, Maine							DATE FI	_	4/24/2025	
	COLE															
Drilling Information LOCATION: See Exploration Location Plan ELEVATION (FT): 315' +/- TOTAL DEPTH (FT): 32.0 LOGGED BY: Kyle H												Kasernan				
	ING CO.:				<u> </u>			Ryan Hacke				DRILLING METHOD: Hollow Stem A	Auger			
	PE: Tr			iedr	rich D-50			/OD: <u>2 1/4 in</u>				SAMPLER: Standard Split-Spoon		-1.		
	ER TYPE				<u>ə</u> .			WEIGHT (lbs) DROP (inch):	-	.0	_ (Casing ID/OD: N/A /N/A CC	RE BARRI	=L:		
							rated Belo									
GENE	RAL NOT	ES:														
	o notes Ymbols:	⊈ At ⊈ At	r <u>Level</u> time of Dr Completic ter Drilling	on of		U = Thin V R = Rock	Spoon Sam Valled Tube Core Samp Vane Shear	Sample Rec. bpf =	= Rec Blows	etration Ler overy Leng per Foot te per Foot	gth	WOH = Weight of Hammer q_U = Unc RQD = Rock Quality Designation \emptyset = Frict		npressive stimated)	Strength, kips/sq.ft.	
					SAMPL	E INFO	RMATIO	N	D							
Elev.	Depth	Casing Pen.				Pen./	Blow		iic Log			Sample Description &	H ₂ 0		Remarks	
(ft)	(ft)	(bpf)	Sample No.	Type	Depth (ft)	Rec.	Count or	Field / Lab Test Data	Graphic I			Classification	Depth		INCITIAL NS	
						(in)	RQD		G							
			1D	M	0-2	24/6	2-1-7- 13		<u>× 1/</u>		<u> </u>	ation/forest duff				
.	↓		2D	Д	2-4	24/16	14-13-		17.54			, brown, SAND, some silt, with organic				
-	-		20	X	2-4	24/10	12-10			I		m dense, light brown, gravelly SAND, silt, with frequent cobbles				
-	-			Ĥ												
310 —	- 5		3D	М	5-7	24/10	26-26-			5.0 \	Very d	lense, light brown, gravelly SAND,				
				Ш			25-29			t	trace s	silt, with frequent cobbles				
-	L															
-	-															
305 —	- 10		4D	Н	10-12	24/0	9-11-9-									
-	+			М			7									
				Π						12.0 L	Loose,	, light brown, gravelly SAND, trace sill				
-																
300 -	- 15		5D	H	15-17	24/16	5-5-5-6									
-	-		02	X												
-	+			Ĥ												
	t I															
295 -	20		60		20.22	04/40	4570			20.0						
			6D	М	20-22	24/12	4-5-7-9			'		m dense, light brown, SAND, some , some silt	Į₽			
-	+			Н								,				
-	+															
- 290 -	- 25									05.0-						
290 -	- 25		7D	M	25-27	24/24	4-6-7-8			25.0 N	Mediu	m dense, light brown, SAND, some si	lt			
-	↓			Д												
-	+															
-																
285 -	- 30		8D	\square	30-32	24/24	3-5-6-6					m dense, light brown-gray, SAND,				
				Μ						S	some					
												Bottom of Exploration at 32.0 feet				
bounda	ation lines ry betweer	n sóil typ	oes, transi	tion	s may											
be grad made a	ual. Water t times and	· level re	eadings ha	ive b s sta	been ated.											
other fa	tions of gro ctors than	those p	resent at t]	BORING	NO.:	B-203	
measur	ements we	ere mad	ië.										201010		D-20J	

E							E	BORIN	G	LO	G	BORING SHEET:	NO.: _	B-204 1 of 1
		CLI	ENT: N	lew	/ Gen H	ospitality	Manager	PROJEC	Г NO.	24-2487				
			OJECT:					DATE ST	ART:	4/24/2025				
S.W.C	COLE	LO	CATION	:_[Franklin	Drive, W	/indham,	Maine				DATE FI	NISH: _	4/24/2025
Drillin	ng Info		on_ ploration	Loc	ation Pla	an I	ELEVATIO	DN (FT): 316	i' +/-		TOTAL DEPTH (FT): 27.0 LC	GGED BY:	Kyle k	Kasernan
	_		board Dr					Ryan Hacket			DRILLING METHOD: Hollow Stem A		I Cyle I	
			ounted D		<u> </u>			/OD: 2 1/4 ir		5/8 in	SAMPLER: Standard Split-Spoon	0		
НАММ	IER TYP	E: <u>A</u> u	utomatic			I	HAMMER	WEIGHT (lbs)	14	0	CASING ID/OD: N/A /N/A CO	RE BARRE	EL:	
WATE	R LEVEI	. DEPT	ION FACT				HAMMER	DROP (inch): w 25' +/-	30					
KEY TO	RAL NOT O NOTES YMBOLS:	<u>Wate</u> ⊻ At ⊻ At		on o		U = Thin V R = Rock	Spoon Sam Walled Tube Core Samp	e Sample Rec. = le bpf =	= Rec Blows	overy L s per Fo	wordWOH = Weight of Hammer q_{U} = UncotRQD = Rock Quality DesignationØ = Frict	ion Angle (Es	pressive	Strength, kips/sq.ft.
		¥ At	ter Drilling		SAMPI		Vane Shear		1	te per F	Coot PID = Photoionization Detector N/A = No	ot Applicable		
Elev.	Depth	Casing		Π			Blow		c Log		Sample	H ₂ 0		
(ft)	(ft)	Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Count or RQD	Field / Lab Test Data	Graphic		Description & Classification	Depth		Remarks
0.45			1D	M	0-2	24/6	3-4-4-6			0.2		/		
315 -	Į			Ŵ	_ ·						Loose, brown, gravelly SAND, with frequent			
-	-		2D	X	2-4	24/12	6-14- 19-9			2.0	Cobbles Dense, light brown, gravelly SAND, some si with frequent cobbles	lt,		
- 310 —	- 5		3D		5-7	24/14	7-6-5-5			5.0	Medium dense, light brown, SAND, some gravel, trace silt, with frequent cobbles			
-	Ì													
- 305 —	- 10 -		4D	X	10-12	24/18	4-3-3-3			10.0	Loose, light brown, SAND, trace silt, trace gravel			
-	+													
300 -	- 15		5D	X	15-17	24/14	3-3-3-5			15.0	Loose to medium dense, light brown, coarse SAND, some gravel, trace silt)		
-	+										-			
- 295	20		6D	V	20-22	24/18	7-9-12- 10							
. .	+													
- 290 -	- - 25		7D	X	25-27	24/22	6-6-6-6			25.0	Medium dense, brown, silty SAND	⊻		
<u> </u>				$\langle \rangle$							Bottom of Exploration at 27.0 feet			
											Bottom of Exploration at 21.0 leet			
bounda be grad	ry betwee lual. Wate	n soil ty r level r	ent approx pes, transi eadings ha	ition ave l	s may been									
Fluctua	tions of gr	oundwa	conditions ater may or	ccur	due to						,			
measur	ements w	ere ma	oresent at i de.	uiei	ume							BORING	NO.:	B-204

							P	ORIN	G	LOG		BORING	NO.: _	B-205
		-						SHEET:		1 of 1				
	7						Manager	ment LLC		PROJEC	-	24-2487		
CW			DJECT:				/indham,	Maine				DATE SI	-	4/24/2025
				· _		5 , 71								
LOCA		See Ex	on ploration iboard Dr					DN (FT): <u>314</u> Ryan Hacke			TOTAL DEPTH (FT): 27.0 Lo DRILLING METHOD: Hollow Stem	DGGED BY : Auger	Kyle I	Kasernan
			ounted D		<u> </u>			/OD: 2 1/4 ii		5/8 in	SAMPLER: Standard Split-Spoon			
НАММ	IER TYP	E: <u>A</u> u	utomatic			I	HAMMER	WEIGHT (lbs)	: 14	40	CASING ID/OD: N/A /N/A C	ORE BARRI	EL:	
WATE		. DEPT	ION FAC ⁻ THS (ft):			Vater Ob		DROP (inch):	30					
KEY TO	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ⊻ At	<u>er Level</u> time of Dr Completic fter Drilling	on o	f Drilling	U = Thin V R = Rock	Spoon Sam Valled Tube Core Samp Vane Shear	Sample Rec. le bpf =	= Rec Blows	etration Length overy Length s per Foot te per Foot	WOH = Weight of Hammer $q_u = Un$ RQD = Rock Quality Designation \emptyset = Frid	Id Vane Shea confined Con ction Angle (E lot Applicable	npressive stimated	Strength, kips/sq.ft.
		-			SAMPL	E INFO	RMATIO	N	0					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or	Field / Lab Test Data	Graphic Log		Sample Description & Classification	H₂0 Depth		Remarks
			1D		0-2	24/10	RQD 2-2-5-		1 1/2		etation/forest duff			
·	+			X			11		[Loos	e, light brown, sandy GRAVEL, with	-1		
- - 310	+		2D		2-4	24/14	10-9- 21-19			2.0 frequ Med	ient cobbles ium dense, gray-brown, gravelly SANE e silt, with frequent cobbles),		
310 -	- 5		3D		5-7	24/12	10-20-							
	+			Д			21-23			6.0 Den	se, gray, gravelly SAND, some silt			
- 305 —	+													
-	- 10		4D	\mathbb{H}	10-12	24/0	12-10-							
	t			X			10-8							
	Ŧ									12.0 Med trace	ium dense, light brown, gravelly SAND silt	,		
300 -	-													
	- 15 -		5D	\square	15-17	24/14	4-10- 16-11							
· ·	t			А										
295 -	Ť.													
-	- 20		6D	\square	20-22	24/12	6-6-9-8							
	‡			Å										
.	+													
290 -	-													
	- 25 -		7D	\mathbb{N}	25-27	24/24	6-9-10- 10			^{25.0} Med	ium dense, brown, SAND, some silt			
				\mathbb{N}							Bottom of Exploration at 27.0 feet			
											שמוטוד טו בקיוטומווטוד מו 12.0 וכפו			
bounda	ry betwee	n soil ty	ent approx	ition	is may									
made a	it times an	d under	eadings ha	s sta	ated.									
other fa		those p	present at t									BORING	NO.:	B-205

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.: E

B-206

F							В	ORINO	G	LOG	BOR		NO.: <u>B-207</u> 1 of 2
		CLI	ENT: N	lew	/ Gen H	ospitality	Manager	ment LLC				JECT	
			JECT:				J						ART: 4/29/2025
S.W.C	COLE	LOC	CATION	:_F	Franklin	Drive, V	Vindham,	Maine			DAT	E FIN	IISH: 4/29/2025
Drillir LOCAT DRILLI RIG TY HAMM	ng Infoi TION: <u></u> ING CO.: YPE: <u>T</u> IER TYP	See Exp : Sea rack M E: Au RECTI	bloration board Dri bounted Di tomatic / ON FAC	illin iedr Au TOF	g rich D-50 tomatic R:)	DRILLER: AUGER ID HAMMER	DN (FT):	t /A 14	DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 / 300 CASING ID/OD: 4 in / 4 1/2 in C			Kyle Kaserman
	RAL NO	TES:											
	O NOTES YMBOLS:	⊻ At ▼ At	e <u>r Level</u> time of Dr Completic ter Drilling	on o		U = Thin \ R = Rock	Spoon Sam Walled Tube Core Samp Vane Shear	e Sample Rec. = le bpf = I	Rec Blows	wery Length WOH = Weight of Hammer q_U = Ur per Foot RQD = Rock Quality Designation Ø = Fri	confined	d Comp gle (Es	Strength, kips/sq.ft. pressive Strength, kips/sq.ft. timated)
					SAMP	LE INFO	RMATIO	N	bo				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log	Sample Description & Classification		H ₂ 0 Depth	Remarks
			1D	М	0-2	24/10	2-3-8-8			0.6 Medium dense, brown, SAND, some silt,	r		
315 — - -	+		2D	A	2-3.3	16/8	15-25- 50/4"			2.0 Some gravel, with occasional cobbles 2.0 Medium dense, light brown, gravelly SANE trace silt Very dense, light brown, gravelly SAND,),		
	- 5		3D	H	5-7	24/0	20-24-			some silt, with frequent cobbles			
- 310 — -	+ + +			Å			27-31						
-	+ 10 		4D	X	10-12	24/2	14-20- 21-20			10.0 Dense, dark gray, SAND, some silt, trace gravel			
305	+ + +												
- 300 —	- 15 - -		5D	X	15-17	24/20	5-6-7-7			15.0 Medium dense, light brown, fine SAND, so silt	me		
- - 295 —	- - 20 -		6D	X	20-22	24/12	6-8-9- 10			20.0 Medium dense, light brown, fine SAND, so silt, trace gravel	me	Ā	
-	- - - 25		7D		25-27	24/10	4-4-4-5			25.0 Loose, light brown, fine SAND, some silt			
290 — - - - 285 — - - - - - - - - - - - - - - - - - - -	+ + +			X									
- - 285 —	- - 30 -		8D	X	30-32	24/14	5-5-5-6						
280 -	- - - 35 -		9D	X	35-37	24/22	2-2-3-5			35.0 Loose, gray, silty SAND			
-	ŧ												
Stratific bounda	ry betwee	n soil ty	ent approx pes, transi adings ha	ition	s may				<u> </u>	(Continued Next Page)			
made a Fluctuat	t times an tions of gr	d under oundwa	conditions ter may oc	s sta ccur	ated. due to								
	ctors than ements w		eresent at t le.	ine t	ume						BOR	ING N	NO.: B-207

E							B	BORING	G	LO	G	-	RING I	NO.: _	B-207 2 of 2
		CLI	ENT: N	lew	/ Gen Ho	ospitality	Manager	nent LLC				1	PROJECT NO.		24-2487
			JECT:									DA	DATE START:		4/29/2025
S.W.C	COLE	LOC	CATION:	ŀ	ranklin	Drive, W	indham,	Maine				DA	DATE FINISH:		4/29/2025
					SAMPL	E INFO	RMATIO	N	Log						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H₂0 Depth		Remarks
- 275 — -	-		10D	X	40-42	24/20	6-6-8-9			40.0	Medium dense, light brown-gray, fine SANI some silt	D,			
- - 270 — -	- 45 - -		11D	X	45-47	24/20	9-8-14- 16			45.0-	Medium dense, light brown-gray, fine SANI some silt, with occasional silt layers	D,			
- - - 265 -	- - 50 -		12D	X	50-52	24/12	17-13- 17-24			50.0	Medium dense, gray-light brown, silty sand GRAVEL, with occasional cobbles Bottom of Exploration at 52.0 feet	у			

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.: B-207

\bigcirc	
\bigtriangledown	
S.W.COLE	

TEST PIT LOGS

PROJECT NO.: 24-2487 LOGGED BY: Evan Walker CONTRACTOR: Seaboard Drilling EQUIPMENT:

PROJECT:	Proposed Hotel
LOCATION:	Franklin Drive, Windham, Maine

CLIENT: New Gen Hospitality Management LLC

TEST PIT TP-201									
DATE:	4/28/2025	LOCATION: See Explora				COMPL	ETIC	N DEPTH	(FT): 7.5
WATER LEVEL DEPTHS (FT): No Free Water Observed REMARKS:									
Depth (feet)	Graphic Log		Stratum	Description	H₂0 Depth	Sample No.	Type	Sample Depth (ft)	Field / Lab Test Data
	<u></u>	Forest Duff / Topso	il						
		0.5 Orange-brown to br		ND, some silt, with roots	-				
			AND GRAVEL, tr	ace silt, with frequent cobbles and	-				
		boulders							
-	-								
F		Guelph Permeamet	er Test @ 4.5': Ui	nsaturated Infiltration Rate = 22.9 in / hr					
- 5									w =7.2 %
-	-								
-	-								
	1	1	Bottom of Expl	oration at 7.5 feet				LL	
Stratification	on lines repre	sent approximate boundary betweer ay be gradual. Water level readings	KEY TO NOTES AND SYMBOLS:	$\frac{\text{Water Level}}{\nabla At \text{ time of Diaging}} q_p = Po$	cket Penetro	ometer Stre	ngth,	kips/sq.ft.	
have been	made at time	es and under conditions stated. vater may occur due to other factors		 ✓ At time of Digging ✓ At Completion of Digging 					
than those	present at th	e time measurements were made.		▼ After Digging					

KEY TO NOTES & SYMBOLS Test Boring and Test Pit Explorations

All stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

- w water content, percent (dry weight basis)
- qu unconfined compressive strength, kips/sq. ft. laboratory test
- S_v field vane shear strength, kips/sq. ft.
- L_v lab vane shear strength, kips/sq. ft.
- q_p unconfined compressive strength, kips/sq. ft. pocket penetrometer test
- O organic content, percent (dry weight basis)
- W_L liquid limit Atterberg test
- W_P plastic limit Atterberg test
- WOH advance by weight of hammer
- WOM advance by weight of man
- WOR advance by weight of rods
- HYD advance by force of hydraulic piston on drill
- RQD Rock Quality Designator an index of the quality of a rock mass.
- γ_T total soil weight
- $\gamma_{\rm B}$ buoyant soil weight

Description of Proportions:

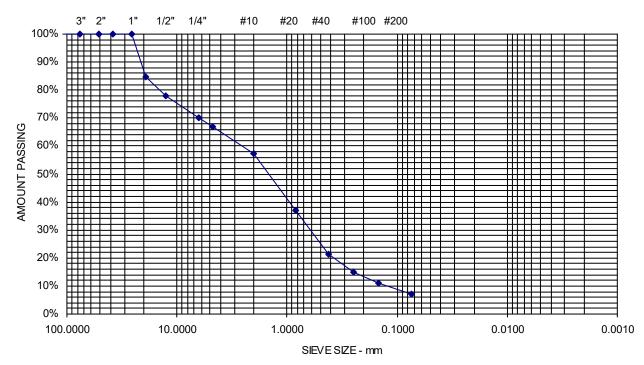
Description of Stratified Soils

		Parting:	0 to 1/16" thickness
Trace:	0 to 5%	Seam:	1/16" to 1/2" thickness
Some:	5 to 12%	Layer:	1/2" to 12" thickness
"Y"	12 to 35%	Varved:	Alternating seams or layers
And	35+%	Occasional:	one or less per foot of thickness
With	Undifferentiated	Frequent:	more than one per foot of thickness

REFUSAL: <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: <u>Test Pit Explorations</u> - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.


ASTM C-117 & C-136

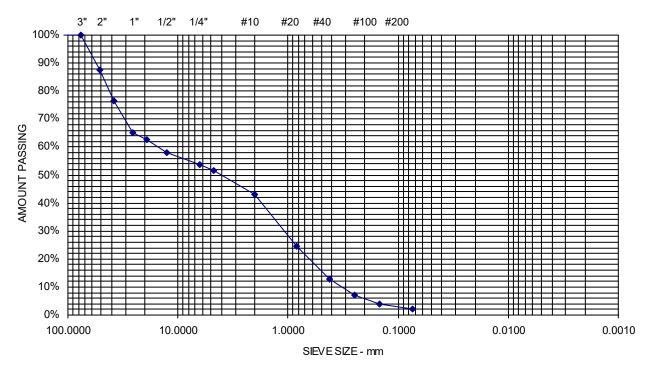
Project Name	WINDHAM ME - PROPOSED HOTEL - GEOTECHNICAL
	ENGINEERING SERVICES
Client	NEW GEN HOSPITALITY MANAGEMENT. LLC

Project Number	24-2487
Lab ID	32986G
Date Received	5/1/2025
Date Completed	5/5/2025
Tested By	NAOMI MCMILLEN

Material Source B-201, 2D, 2-4

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%	1
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	85	
12.5 mm	1/2"	78	
6.3 mm	1/4"	70	
4.75 mm	No. 4	67	33.1% Gravel
2.00 mm	No. 10	57	
850 um	No. 20	37	
425 um	No. 40	21	59.7% Sand
250 um	No. 60	15	
150 um	No. 100	11	
75 um	No. 200	7.2	7.2% Fines

Report of Gradation


ASTM C-117 & C-136

Project Name	WINDHAM ME - PROPOSED HOTEL - GEOTECHNICAL
	ENGINEERING SERVICES
Client	NEW GEN HOSPITALITY MANAGEMENT. LLC

Project Number	24-2487
Lab ID	32987G
Date Received	5/1/2025
Date Completed	5/7/2025
Tested By	LEAH YOUNGE

Material Source TP-201, 5-6

<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	88	
38.1 mm	1-1/2"	76	
25.0 mm	1"	65	
19.0 mm	3/4"	63	
12.5 mm	1/2"	58	
6.3 mm	1/4"	54	
4.75 mm	No. 4	52	48.4% Gravel
2.00 mm	No. 10	43	
850 um	No. 20	24	
425 um	No. 40	13	49.4% Sand
250 um	No. 60	7	
150 um	No. 100	4	
75 um	No. 200	2.2	2.2% Fines

