

CIVIL ENGINEERING - SURVEYING - LANDSCAPE ARCHITECTURE

STORMWATER MANAGEMENT REPORT

For

Franklin Drive Subdivision Windham, Maine

Prepared for:

Land of New Gen Estates, LLC 50 Maine Mall Road South Portland, ME 04106

Prepared by:

Sebago Technics, Inc. 75 John Roberts Rd, Suite 4A South Portland, ME 04106

May, 2025

<u>Contents</u>

1.	Introduction	. 1
2.	Existing Conditions	. 1
3.	Soils	. 1
4.	Proposed Site Improvements	. 2
5.	Existing Conditions Model	. 2
6.	Proposed Conditions Model	. 3
7.	Stormwater Management	. 3
В	asic Standard - Chapter 500, Section 4(B)	. 3
G	General Standard - Chapter 500, Section 4(C)	. 3
Р	hosphorus Standard – Chapter 500, Section 4(D)	. 4
F	looding Standard - Chapter 500, Section 4(F)	. 4
F	lydroCAD Stormwater Analysis	. 5
8.	Summary	. 6

Appendices

Stormwater Quality Calculations & Phosphorus Calculations
Hydrologic Modeling– Existing Conditions (HydroCAD)Summary
Hydrologic Modeling – Proposed Conditions (HydroCAD) Summary
Inspection, Maintenance, and Housekeeping Plan
Subsurface Investigations
Stormwater Management Plans

STORMWATER MANAGEMENT REPORT FRANKLIN DRIVE SUBDIVISION WINDHAM, MAINE

1. Introduction

This Stormwater Management Report has been prepared to present analyses performed to address the potential impacts associated with the project due to proposed modifications in stormwater runoff characteristics and land cover changes. The stormwater management controls that are outlined in this report have been designed to suit the proposed development and to comply with applicable regulatory requirements.

2. Existing Conditions

The project site currently consists of undeveloped land located at 20 Franklin Drive in Windham, ME. The site is approximately 38.59 acres and bounded by The Home Depot (part of the Windham Mall) to the south, the Windham Veterans Center to the east, and undeveloped land to the north and west.

Slopes on the site range from generally flat along Franklin Drive, but range from flat to steep slopes throughout the wooded portion of the property. There are approximately 2.5 acres of steep slopes located throughout the site. There are approximately 13.4 acres of wetlands located on the site, including a vernal pool of special significance with an approximate size of 0.53 acres. Wetland and vernal pool delineations were conducted by Mark Hampton Associates and Flycatcher, respectively, in 2020.

A portion of the site is located within the Sebago Lake Watershed. This lake is listed in Chapter 502 of the Maine Department of Environmental Protection (MDEP) regulations as a Lake Most at Risk from New Development, but is not severely blooming. Phosphorus calculations have been included in Appendix A. The project phosphorus export (PPE) is less than or equal to the project phosphorus budget (PPB) and therefore has no further phosphorus treatment or compensation requirement.

The proposed development area of the site is not located in an identified flood zone, nor is the site located in any Shoreland Zone. The site is located in the Commercial 1 (C-1) District and is identified on the Town of Windham Tax Map 18 as Lot 26-2-A.

3. <u>Soils</u>

Soil characteristics were obtained from the [source] Soil Survey completed by Sebago Technics. The Hydrologic Groups (HSG) of the soils are classified by Technical Release TR-55 of the Soil Conservation Service as follows:

-1-

Soil Map Symbol	Soil Name	Slope (%)	HSG
DeB	Deerfield loamy fine sand	3-8	А
HgB	Hermon sandy loam	3-8	А
HgC	Hermon sandy loam, very sandy	8-15	A
HIB	Hinckley loam sand	3-8	А
Sp	Sebago mucky peat	0-1	A/D
Wa	Walpole fine sandy loam	0-3	A/D

Hydrologic Soil Group boundaries are delineated on the Watershed Map. A copy of the Class Medium Intensity Soil Survey is included as Appendix 4.

4. <u>Proposed Site Improvements</u>

The proposed development will consist of a four (4) lot subdivision of the existing parcel located at 20 Franklin Drive. This property is currently undeveloped with a trail running through the middle of the parcel. The development proposed within this project scope includes the removal of the existing cul-de-sac and an approximately 380 LF extension of Franklin Drive. This road extension is proposed to have two (2) way traffic flow, parallel parking, curbing, sidewalks on both sides of the road, a hammerhead turnaround at the terminus, underground utilities, and stormwater infrastructure. This project will result in the creation of 0.43 acres of non-vegetated area and 0.85 acres of total developed area.

5. Existing Conditions Model

The pre-development watershed plan consists of two (2) subcatchments labeled 1.0S and 2.0S in the HydroCAD model. Two (2) locations were identified as Points of Analysis (POA) for comparing peak runoff rates. The first point of analysis represents an existing best management practice (BMP) that is located directly south of the existing cul-de-sac within the abutting property. The second point of analysis represents the existing low point of the site that contains a vernal pool and is located in the middle of the property.

POA-1: Subcatchment 1.0S is tributary to this point of analysis with an area of approximately 6.7 acres. This area includes a portion of Franklin Drive, the grass area directly adjacent to the southern property line, and a portion of the wooded area within the property.

POA-2: Subcatchment 2.0S is tributary to this point of analysis with an area of approximately 7.9 acres. This area includes a portion of the adjacent property directly southeast of the site and a portion of the wooded area within the property.

The total amount of acreage within this study is approximately 14.6 acres.

-2-

6. Proposed Conditions Model

The post-development watershed area consists of the same overall area as the predevelopment plan, however, the pre-development subcatchments have been broken into smaller watersheds as a result of the proposed development. There is a total of seven (7) subcatchments in the proposed conditions model for a total area of approximately 14.6 acres.

POA-1: Subcatchment 1.1S is tributary to this point of analysis with an approximate area of 6.3 acres. This subcatchment includes the existing area that is to remain on and off-site. There is no development proposed within this subcatchment.

POA-2: Subcatchments 2.1S through 2.6S are tributary to this point of analysis with an approximate area of 8.2 acres. Subcatchments 2.1S through 2.5S represent the proposed development of the road extension and underdrained soil filter. Subcatchment 2.6S represents the outskirts of the turnaround that will be graded to accommodate the proposed road, as well as the existing wooded area that is to remain the same as in the existing conditions model.

The Best Management Practice (underdrained soil filter) has been designed and sized in accordance with DEP BMP standards contained within Chapter 500 and the BMP Manual. Sizing calculations can be found in Appendix 1.

7. <u>Stormwater Management</u>

Basic Standard - Chapter 500, Section 4(B)

Since the project will disturb more than one (1) acre of land area, MDEP Basic Standards apply, requiring that grading or other construction activities on the site do not impede or otherwise alter drainage ways to have an unreasonable adverse impact. We have avoided adverse impacts by providing an Erosion & Sedimentation Control Plan, and an Inspection, Maintenance, and Housekeeping Plan (Appendix 3) to be implemented during construction and post-construction stabilization of the site. These construction requirements have been developed following Best Management Practice guidelines.

General Standard - Chapter 500, Section 4(C)

Since the project will create more than one (1) acre of impervious surface, MDEP General Standards apply, which require a project's stormwater management system to include treatment measures that will mitigate for the increased frequency and duration of channel erosive flows due to runoff from smaller storms, provide for effective treatment of pollutants in stormwater, and mitigate potential temperature impacts. The General Standards require treatment of no less than 95% of the site's created impervious area and no less than 80% of the site's created developed area (landscaped area and impervious area combined). To mitigate the changes in hydrologic patterns due to the development of this

project, one (1) underdrained soil filter has been implemented into the stormwater management infrastructure. Filtration BMPs are very effective at removing a wide range of pollutants through the use of organic soil filter media.

BMP sizing and treatment calculations are provided as Appendix 1.

Through the use of the aforementioned BMP's at least 95% of new impervious area and at least 80% of new developed area will be receiving treatment. This meets the requirements for the Maine DEP General Standards.

Phosphorus Standard – Chapter 500, Section 4(D)

As stated previously, Sebago Lake is identified as a lake most at risk, but not categorized as severely blooming, per MDEP Chapter 502. Therefore, the project is subject to the Phosphorus Standards of MDEP Chapter 500, as the project results in 1 acres or more of impervious area.

One (1) Underdrained Soil Filter is proposed for attenuation and treatment of stormwater runoff generated by the proposed development. The BMP was designed per the MDEP Stormwater BMP Manual, Chapter 7.1, as well as Volume II: Phosphorus Control Manual of the Maine Stormwater Management Design Manual. It was chosen as the most appropriate BMP for this project since it provides an effective means of filtration for contaminants commonly found in stormwater and is the best fit for the current site constraints.

A per-acre phosphorus allocation calculation was completed for the project using the High Export Option to determine if the allowable per-acre phosphorus allocation for the Sebago Lake Watershed is achieved. The total acreage of the development parcel is approximately 38.6 acres. The wetland area was obtained using NWI wetlands, as well as wetlands mapped by Mark Hampton, and is equal to 13.4 acres. Steep slope areas (slopes greater than 25%) equal 2.5 acres. Therefore, the project phosphorus budget for the project parcel is equal to 1.20 lbs. P/year. The pre-treatment phosphorus export (pre-PPE) was calculated to be 0.63 lbs. P/year. With the implementation of the proposed stormwater treatment for newly developed areas, approximately 0.15 lbs. P/year (post-PPE) will be exported off-site in the proposed condition. No mitigation to existing pollutant sources is proposed, as the site is undeveloped in its existing condition. The Project Phosphorus Export is below the Project Phosphorus Budget, and therefore, the Phosphorus Can be referenced in Appendix 1.

Flooding Standard - Chapter 500, Section 4(F)

Since the planned project will not create more than three (3) acres of impervious surface, but due to the SLODA permit that will be required for the future proposed development within the site, MDEP Flooding Standards must be met. The Flooding Standard requires a project's stormwater management system detain, retain, or result in the infiltration of stormwater from 24-hour storms of the 2, 10, and 25-year frequencies such that the peak flows of stormwater from the project site do not exceed the peak flows of stormwater prior

to undertaking the project. As such, a runoff evaluation was performed using the methodology outlined in the USDA Soil Conservation Service's "Urban Hydrology for Small Watersheds - Technical Release #55 (TR-55)". HydroCAD computer software was utilized to perform the calculations.

HydroCAD Stormwater Analysis

Runoff curve numbers were determined for each of the watersheds by measuring the area of each hydrologic soil group within each type of land cover. The type of land cover was determined based on survey data, field reconnaissance and aerial photography. Times of concentration were determined from site topographic maps in accordance with SCS procedures.

The 24-hour rainfall values utilized in the hydrologic model were obtained from Appendix H of MDEP's Chapter 500: Stormwater Management (effective date August 2015). Rainfall values for York County are listed in the table below.

Storm Frequency Pre York C	ecipitation (in./24 hr) County
2-year	3.1
10-year	4.6
25-year	5.8

The following table presents the results of the peak runoff calculations at the analysis points for the existing and proposed conditions.

	Peak Runoff Rate Summary Table								
Analysis Point	Storm Event	Existing Conditions (cfs)	Proposed Conditions (cfs)						
	2-year	0.0	0.0						
POA-1	10-year	0.0	0.0						
	25-year	0.3	0.1						
	2-year	0.0	0.0						
POA-2	10-year	0.1	0.1						
	25-year	0.4	0.4						

The HydroCAD Data output sheets from this analysis are appended to this report (Appendix 2) along with the Stormwater Management Plans (Appendix 5). The model predicts that the peak runoff rates in the post-development condition at Points of Analysis 1 and 2 are at or below pre-development runoff rates for the 2, 10, and 25-year storm events with implementation of the proposed stormwater management practices.

8. Summary

The proposed development has been designed to manage stormwater runoff through Best Management Practices approved by MDEP. Stormwater BMP meets MDEP's General Standard by providing treatment to at least 95% of the impervious areas and at least 80% of the total developed area. Runoff discharging from the site will be at or below predevelopment conditions for the 2, 10, and 25-year storm events at all three study points. Additionally, erosion and sedimentation controls, along with associated maintenance and housekeeping procedures, have been outlined to prevent unreasonable impacts on the site and the surrounding environment.

Prepared by:

SEBAGO TECHNICS, INC.

Robert A. McSorley, P.E. Senior Project Manager

RAM/bjb

Robert A. McSorley, P.E. ME Reg. No. 8588 May 19, 2025

Appendix 1

Stormwater Quality Calculations & Phosphorus Calculations

Table 1: MDEP GENERAL STANDARD CALCULATIONS

Job # 230411

		EXISTING ONSITE IMPERVIOUS AREA	NEW ONSITE	EXISTING ONSITE	NEW ONSITE LANDSCAPED	NET NEW DEVELOPED	NET EXISTING DEVELOPED	TREATMENT	IMPERVIOUS AREA	LANDSCAPED	DEVELOPED AREA	TREATMENT
AREA ID	WATERSHED SIZE (S.F.)	:	IMPERVIOUS AREA (S.F.)	TO REMAIN (S.F.)	AREA (S.F.)	AREA (S.F.)	AREAS (S.F.)	PROVIDED?	TREATED (S.F.)	AREA TREATED (S.F.)	TREATED (S.F.)	BMP
1.1S	276,563	15,903	0	5,750	3,516	3,516	21,653	ON	0	0	0	None
2.1S	4,541	1,582	2,577	0	382	2,959	1,582	YES	4,159	382	4,541	UDSF-1
2.25	4,306	856	2,103	0	1,347	3,450	856	YES	2,959	1,347	4,306	UDSF-1
2.35	7,650	0	2,080	0	570	7,650	0	YES	7,080	570	7,650	UDSF-1
2.4S	7,268	0	6,972	0	296	7,268	0	YES	6,972	296	7,268	UDSF-1
2.5S	9,204	0	0	0	9,204	9,204	0	YES	0	9,204	9,204	UDSF-1
2.6S	326,379	28,189	0	0	2,974	2,974	28,189	NO	0	0	0	None
TOTAL (S.F.)	635,911	46,530	18,732	5,750	18,289	37,021	52,280		21,170	11,799	32,969	

TOTAL NEW IMPERVIOUS AREA (S.F.)	18,732	TOTAL NEW DEVELOPED AREA (S.F.)	32,969
TOTAL IMPERVIOUS AREA RECEIVING TREATMENT (S.F.)	21,170	TOTAL AREA RECEIVING TREATMENT (S.F.)	32,969
% OF IMPERVIOUS AREA RECEIVING TREATMENT*	113.02%	% OF AREA RECEIVING TREATMENT*	100.00%
*INCLUDES THE TREATMENT OF EXISTING IMPERVIOUS AND DEVELOPED AREAS THAT ARE NOT CURRENTLY RECEIVING TREATMENT	'ING TREATMENT		

IKEALMENT ס Ş 5 INCLUDES THE

			O TECHN				JOB SHEET NO.	230411	1		OF	2	
		South	Portland, Ma	ine 04106			CALCULATED BY		КМК		DATE	12/13	/2024
		Tel	. (207) 200-	2100			FILE NAME	230411 WQ	с		PRNT DATE	5/16/	2025
ask:		Calculate	water qua		UNDERDRAIN er MDEP chap								
oforo		1. Maine	DEP Chap	ter 500, Secti	on 4.C.(3)(b)								
Refere	ences	a.			volume equal t								
					pervious area				ent's landsc	aped area'			
		2. Maine a.			Practices Stor ent 5% of impo				area"				
ribut	ary to Ur	nderdraine	d Filter	UDSF-1									
	Landsca	ped Area		11,799	SF								
	Impervi	ous Area		21,170	SF								
∕linim	um Surf	ace Area											
	Require	d	(2% X Lar	ndscaped + 5%	6" X Imperviou	s)							
	Total La	ndscaped	Area	11,799	SF	Area	236.0	SF					
	Total Im	npervious A	Area	21,170.00	SF	Area	1,058.5	SF					
			Requi	red Minimum	n Surface Area		1,294.5	SF					
				Provideo	l Surface Area		3,000.0	SF					
reatn	nent Vol	ume											
	Require	d	(0.4" X La	indscaped + 1	.0" X Impervio	us)							
	Landsca	ped Area		11,799	SF	Volume	393.3						
	Impervi	ous Area		21,170	SF	Volume	1,764.2						
			T	reatment Vol	ume Required		2,157.5	CF	0.050	AF			
edim	ent Pre-	Treatment		rovided Treat	ment Volume		5,951.0	CF	Elev. 313.0	00 - 314.50			
	Per Refe	erence 2, C	hapter 7.	1	"Pretreatmen	t devices sha	all be provi	ded to minii	nize discha	rge of sedi	ment to th	ne soil	filter"
	Annual	Sediment I	-oad:	55 cubic feet	per acre per y	ear of sande	ed area						
	Area to	be sanded	:	21,170	SF								
	Sedime	nt Volume		27	CF								
	Provide	d		672	CF	12	Inch Deep	Forebay	with area	of	672	sf	
					<u> </u>								

SEBAGO TECHNICS, INC.

75 John Roberts Road, Suite 4A South Portland, Maine 04106 (207) 856-0277 FAX (207) 856-2206

JOB	230411		
SHEET NO.	1	OF	1
CALCULATED BY	BJB	DATE	4/22/2025
CHECKED BY	RAM		
FILE NAME	230411 WQV	PRINT DATE	5/16/2025

ORIFICE SIZING CALCULATION

Stormwater BMP:UDSF-1Orifice Equation $Q = CA \sqrt{2gh}$
Q = Rate of Discharge (cfs) A = Orifice Area (sf)
G = Gravitational Constant (32.2 ft/s ²) h = Depth of water above the flow line (center) of the orifice (ft) C = 0.6 Orifice coefficient (usually assumed = 0.6)
Average discharge rate required to drawdown the treatment volume in a desired amount of time is: Q = <u>WQv</u> Tcf
TV = Treatment Volume (cf) T = Target Drain Time (Hours) cf = Conversion Factor = 3600 sec/hr
TV = 5,951 cf $t = 48 hr$
Q = TV 0.03 cfs Target Rate for 48 hour discharge tCF surface area of filter = 3,000 SF
hmax = 1.98 ft h/2= 0.99 ft
A = $Q = \frac{Q}{C \sqrt{2gh}}$ A = 0.007 sf = 1.03 sq. in.

Summary for Pond 8P: USDF-1

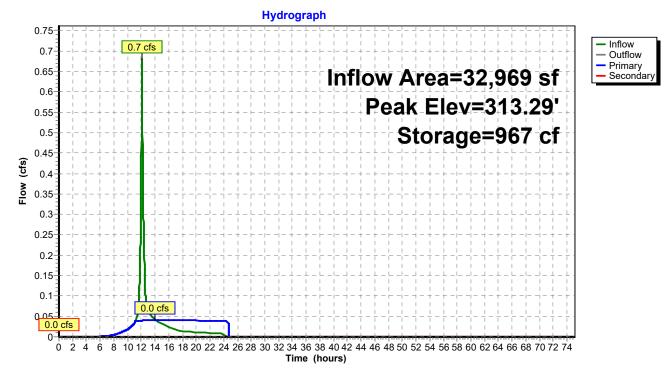
32,969 sf, 64.21% Impervious, Inflow Depth = 0.79" for UDSF-1 WQV event Inflow Area = Inflow = 0.7 cfs @ 12.09 hrs, Volume= 2.162 cf 0.0 cfs @ 14.03 hrs, Volume= 0.0 cfs @ 14.03 hrs, Volume= Outflow 2,162 cf, Atten= 94%, Lag= 116.6 min = Primary = 2,162 cf Routed to Link POA-2 : POA-2 Secondary = 0.0 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link POA-2 : POA-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 313.29' @ 14.03 hrs Surf.Area= 3,395 sf Storage= 967 cf Flood Elev= 317.50' Surf.Area= 6,968 sf Storage= 20,572 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 219.2 min (1,027.8 - 808.6)

Volume	Invert	Ava	il.Stor	age Storage Des	cription					
#1	310.83'		20,57	2 cf Custom Sta	ge Data (Prismati	c) Listed below (Recalc)				
Elevatio	on Su	rf.Area	Void	s Inc.Store	e Cum.Store					
(fee	t)	(sq-ft)	(%) (cubic-feet)					
310.8	33	3,000	0.	0 () 0					
312.9	99	3,000	0.	0 0	0 0					
313.0	00	3,000	100.	0 30) 30					
314.0	00	4,348	100.	0 3,674	4 3,704 3 8,462					
315.0	-	5,168	100.	,						
316.0		6,042		,	-					
317.0	00	6,968	100.	0 6,505	5 20,572					
Device	Routing	In	vert	Outlet Devices						
#1	Primary	310).73'	12.0" Round Ou	tlet Pipe					
					_= 82.0' CPP, projecting, no headwall, Ke= 0.900					
						' S= 0.0052 '/' Cc= 0.900				
						erior, Flow Area= 0.79 sf				
#2	Device 1					mited to weir flow at low heads				
#3	Device 2					e area Phase-In= 0.01'				
#4	Device 1	314	.50'	-		e X 29.00 C= 0.600				
#5	Secondary	216	6.50'	Limited to weir flo		aatad Baatangular Wair				
#5	Secondary	310	0.50			ested Rectangular Weir .00 1.20 1.40 1.60 1.80 2.00				
					1.00 4.50 5.00 5.5					
						9 2.68 2.68 2.67 2.64 2.64				
					2.65 2.65 2.66 2.6					

230411 POST Type III 24-hr UDSF-1 WQV Rainfall=1.78" Prepared by Sebago Technics Printed 5/16/2025 HydroCAD® 10.20-4c s/n 00643 © 2024 HydroCAD Software Solutions LLC Page 2


Primary OutFlow Max=0.0 cfs @ 14.03 hrs HW=313.29' TW=0.00' (Dynamic Tailwater) **1=Outlet Pipe** (Passes 0.0 cfs of 4.2 cfs potential flow)

2=UD Orifice (Orifice Controls 0.0 cfs @ 7.49 fps)

-3=Infiltration (Passes 0.0 cfs of 0.2 cfs potential flow)

-4=Beehive Grate (Controls 0.0 cfs)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=310.83' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Pond 8P: USDF-1

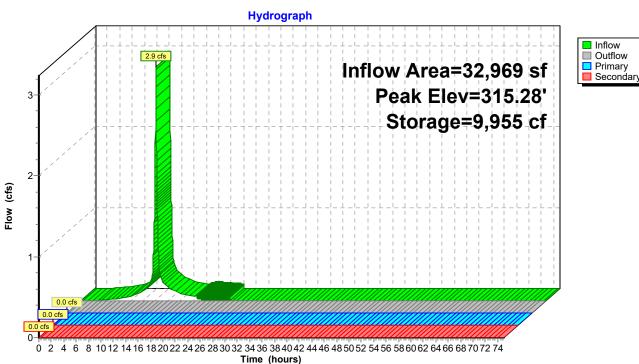
Summary for Pond 8P: USDF-1

Inflow Area = 32,969 sf, 64.21% Impervious, Inflow Depth = 3.62" for 25-YR event Inflow 2.9 cfs @ 12.08 hrs, Volume= = 9,955 cf 0 cf, Atten= 100%, Lag= 0.0 min Outflow = 0.0 cfs @ 0.00 hrs, Volume= Primary 0.0 cfs @ 0.00 hrs, Volume= 0 cf = Routed to Link POA-2 : POA-2 0.0 cfs @ 0.00 hrs, Volume= 0 cf Secondarv = Routed to Link POA-2 : POA-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 315.28' @ 24.37 hrs Surf.Area= 5,415 sf Storage= 9,955 cf Flood Elev= 317.50' Surf.Area= 6,968 sf Storage= 20,572 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

		iption	ge Storage Desc	II.Storage	Ava	Invert	Volume
c)	Data (Prismatic)Listed below (Recalc)	e Data (Prisma	cf Custom Stag	20,572 cf		310.83'	#1
	Cum Store	Cum Stor	Inc Store	Voids	rf Area	Su	Elevation
						04	
		(00.010.100					
	0		-				
	5	3	•				
	,	.0 4,758 8,462					315.00
	14,067		5,605		6,042		316.00
	20,572	20,57	6,505	100.0	6,968		317.00
				-			
					310	rimary	#1 P
0.000							
					210	ovice 1	#0 F
71							
					512		#4 L
Voir					316	econdary	#5 .9
					010	coondary	#0 C
1.00 2.00			()				
64 2.64							
	2.65 2.66 2.67 2.69						
'9 sf ow heads)1' Veir 1.80 2.00	30 3,704 8,462 14,067 20,572 Pipe X 0.00 ting, no headwall, Ke= 0.900 10.73' / 310.30' S= 0.0052 '/' Cc= 0.900 PE, smooth interior, Flow Area= 0.79 sf C= 0.600 Limited to weir flow at low he n over Surface area Phase-In= 0.01' Beehive Grate X 29.00 C= 0.600 low heads adth Broad-Crested Rectangular Weir 0 0.60 0.80 1.00 1.20 1.40 1.60 1.80 4.50 5.00 5.50 2.55 2.70 2.69 2.68 2.68 2.67 2.64 2.	(cubic-fee 3 3,70 8,46 14,06 20,57 •t Pipe X 0.00 ecting, no head 310.73' / 310.3 d PE, smooth i e C= 0.600 on over Surfa t. Beehive Gra at low heads eadth Broad-0 40 0.60 0.80 0 4.50 5.00 5 5 2.55 2.70 2.	5,605 6,505 2.0" Round Outl = 82.0' CPP, pro- hlet / Outlet Invert= = 0.013 Corrugate .0" Vert. UD Orifi 4.10 in/hr Infiltrat .0" W x 7.0" H Ve imited to weir flow 4.0' long x 9.0' b lead (feet) 0.20 0 .50 3.00 3.50 4.0 Coef. (English) 2.4	100.0 100.0 100.0 100.0 <u>overt Out</u> 0.73' 12 L= Info n= 0.83' 1.0 0.83' 2.4 1.50' 1.0 Lin 6.50' 14 He 2.5 Co	6,968 Ir 310 310 310 310 314	Su couting rimary vevice 1 vevice 2 vevice 1 eevice 1 econdary	316.00 317.00 <u>Device R</u> #1 P #2 D #3 D #4 D


Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=310.83' TW=0.00' (Dynamic Tailwater)

1=Outlet Pipe (Controls 0.0 cfs)

-2=UD Orifice (Controls 0.0 cfs)

-3=Infiltration (Controls 0.0 cfs) -4=Beehive Grate (Controls 0.0 cfs)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=310.83' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

Pond 8P: USDF-1

Worksheet 1	-	PPB ca	Iculations
-------------	---	--------	------------

Project Name:	Franklin Drive Subdivision
Lake Watershed:	Sebago Lake
Town: Windham, M	/F

Standard Calculations

Watershed per acre phosphorus budget (Appendix C)	PAPB	0.053	lbs P/acre/year
Total acreage of development parcel:	TA	38.6	acres
NWI wetland acreage:	WA	13.4	acres
Steep slope acreage:	SA	2.5	acres
Project acreage: A = TA - (WA+ SA)	Α	22.69	acres
Project Phosphorus Budget: PPB = P x A	РРВ	1.20257	lbs P/year

Small Watershed Adjustment

If Project Acreage (A) is greater than the threshold acreage for the small watershed threshold (SWT, from pertinent lake and town info in the table in Appendix C), calculate an alternative PPB using the analysis below and use this value if it is less than the the Standard Calculation PPB.

Small Watershed Threshold (Appendix C):	SWT	acres
Project acreage:	Α	acres
Allowable increase in town's share of annual phosphorus load to lake (Appendix C):	FC	lbs P/year
Area available for development (Appendix C):	AAD	acres
Ratio of A to AAD (R=A/AAD)	R	
Project Phosphorus Budget		
If R < 0.5, PPB = [(FC x R)/2] + [FC/4]	PPB	lbs P/year
If R> 0.5 , PPB = FC x R	PPB	lbs P/year

Worksheet 2 Pre-PPE and Post-PPE Calculations

Calculate phosphorus export from development for before and after treatment

Development type: _Subdivision/ Road Extension Use as many sheets as needed for each development type (commercial, roads, residential lots, etc.) Project name: Franklin Drive Subdivision

2

Sheet #

Land Surface Type or Lot #(s) with description	Acres or # of lots	Export Coefficient from Table 3.1 Table 3.2	Pre- treatment Algal Av. P Export (Ibs P/year)	Treatment Factor for BMP(s) from Chapter 6	Post- treatment Algal Av. P Export (Ibs P/year)	Description of BMPs
Pavement	0.48	1.25	0.6	0.25	0.15	UDSF
Landscape, HSG A	0.27	0.1	0.027	0.25	0.00675	UDSF
		Total Pre-PPE (Ibs P/year)	0.627	Total PostPPE (Ibs P/year)	0.15675	

Appendix D: Worksheet 3 - Mitigation credit

Subdivision Development type: Project name: Franklin Drive Subdivision

က Sheet #

Mitigation credit when a pre-existing source is being eliminated

-		-	0						
Mitigation Source Area Land Use	Acres	Acres Coefficient Modifier	Modifier	Pre- treatment Historical P Export (lbs P/year)	Treatment Factor for Historical BMP(s) (1.0 if no BMPs)	Historical P Export (lbs P/year)		Mitigation Credit (lbs P/year)	Comments
			0.5	0	1	0		0	
			0.5	0	1	0		0	
			0.5	0	1	0		0	
				Total s	Total source elimination mitiagion credit (SEC)	on mitiagion cr	redit (SEC)	0	lbs P/year

DMD WO ¢ ic troated by ovicting. 0r0 orndit who Mitication

	nen J	l a pre-exisi	ung sour	ce is treate	a by a new D	Ш				
Mitigation Source Area Land Use	Acres	Acres Coefficient (Ibs P/acre/year)	Modifier	Pre- treatment Historical P Export (lbs P/year)	Treatment Factor for Historical BMP(s) (1.0 if no BMPs)	Historical P Export (lbs P/year)		Treatment Factor for New BMP(s) Chapter 6	Mitigation Credit (lbs P/year)	Comments
			0.5	0	1	0	+		0	
			0.5	0	1	0	ر		0	
			0.5	0	1	0	+		0	
				Total	Total source treatment mitiagion credit (STC)	ıt mitiagion cr	edit (STC)	0	lbs P/year

lbs P/year

0

TOTAL MITIGATION CREDIT (SEC + STC)

WORKSHEET 4 - PROJECT PHOSPHORUS EXPORT SUMMARY

Summarizing the project's algal available phosphorus export (PPE)

Project Name: Franklin Drive Subdivision

Project Phosphorus Budget - Worksheet 1	PPB	1.20	lbs P/year
Total Pre-Treatment Phosphorus Export - Worksheet 2	Pre-PPE	0.63	lbs P/year
Total Post-Treatment Phosphorus Export - Worksheet 2	Post-PPE	0.15	lbs P/year
Total Phosphorus Mitigation Credit - Worksheet 3	тмс	0.00	lbs P/year
Project Phosphorus Export (Post-PPE - TMC)	PPE	0.15	lbs P/year

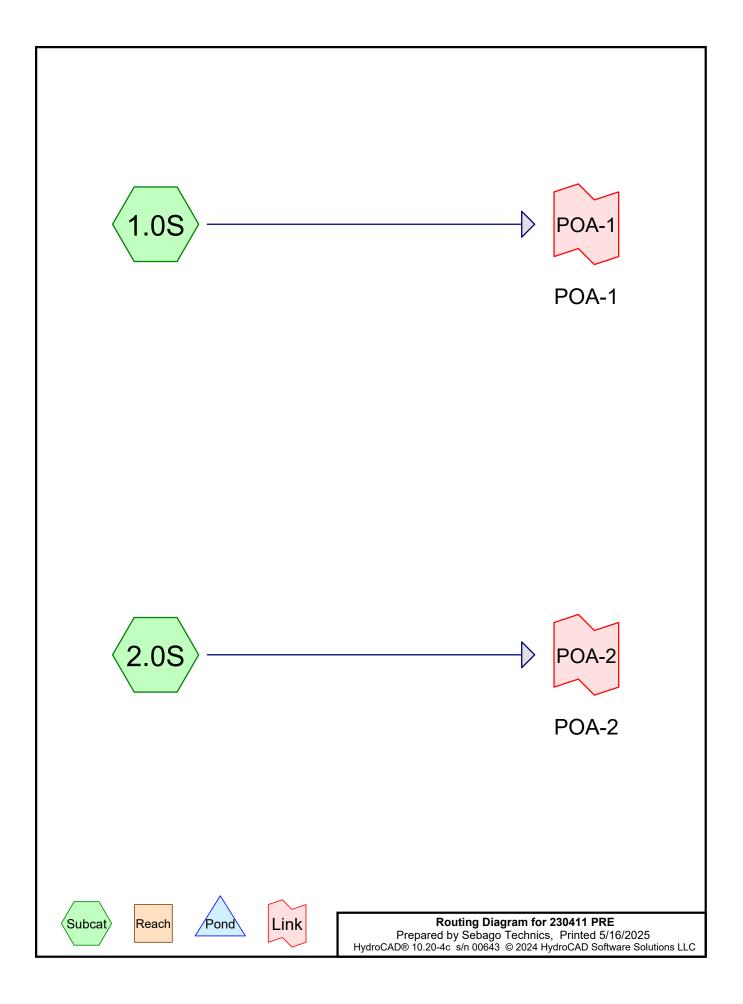
Is the Project Phosphorus Export ≤ the Project Phosphorus Budge	et? (PPE≤PPB)
If YES , PPE is less than or equal to PPB and the project meets its phosphorus budget . If NO, PPE is greater than PPB, more reduction in phosphorus export is required or the payment of a compensation fee may be an option	YES
The amount of phosphorus that needs further treatment or compensation	lbs P/year

Has Project Phosphorus Export been sufficiently reduced? Is (Pre-PPE - Post-PPE)/Pre-PPE greater than 0.60?

If **YES**, in some watersheds the compensation fee is an available option. If **NO**, more treatment must be provided. PPE must be further reduced.

The post-treatment phosphorus export must be less than 40% of the pretreatment export (Post-PPE < 0.4*Pre-PPE)

If the project is located in a watershed that is eligible for a compensation fee (or is a residential subdivision with buffers), a compensation fee may be appropriate as follows:


%

If Project Export has been reduced by greater than 60% and less than 75%, \$25,000 per pound minus \$833 per 1% Percent Export

If Project Export has been reduced by greater than 75%, \$12,500 per pound minus \$500 per 1% Project Export

Appendix 2A

Existing Conditions HydroCAD Summary

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
5,750	39	>75% Grass cover, Good, HSG A (1.0S)
3,903	96	Gravel surface, HSG A (1.0S)
132,016	30	Meadow, non-grazed, HSG A (1.0S)
51,124	98	Paved parking, HSG A (1.0S, 2.0S)
443,118	30	Woods, Good, HSG A (1.0S, 2.0S)
635,911	36	TOTAL AREA

Soil Listing (all nodes)

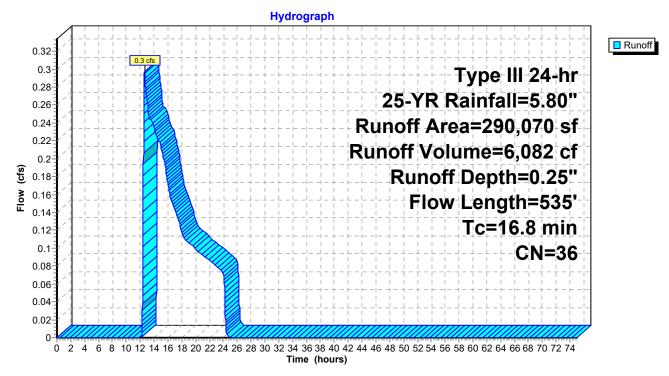
Area (sq-ft)	Soil Group	Subcatchment Numbers
635,911	HSG A	1.0S, 2.0S
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
635,911		TOTAL AREA

230411 PRE Prepared by Sebago Technics HydroCAD® 10.20-4c s/n 00643 © 2024 Hy	Type III 24-hr 2-YR Rainfall=3.10" Printed 5/16/2025 droCAD Software Solutions LLC Page 4
Runoff by SCS	00-75.00 hrs, dt=0.01 hrs, 7501 points FR-20 method, UH=SCS, Weighted-CN nd method - Pond routing by Dyn-Stor-Ind method
Subcatchment1.0S:	Runoff Area=290,070 sf 7.91% Impervious Runoff Depth=0.00" Flow Length=535' Tc=16.8 min CN=36 Runoff=0.0 cfs 0 cf
Subcatchment2.0S:	Runoff Area=345,841 sf 8.15% Impervious Runoff Depth=0.00" Flow Length=441' Tc=17.6 min CN=36 Runoff=0.0 cfs 0 cf
Link POA-1: POA-1	Inflow=0.0 cfs 0 cf Primary=0.0 cfs 0 cf
Link POA-2: POA-2	Inflow=0.0 cfs 0 cf Primary=0.0 cfs 0 cf
Total Runoff Area = 6	35,911 sf Runoff Volume = 0 cf Average Runoff Depth = 0.00" 91.96% Pervious = 584,787 sf 8.04% Impervious = 51,124 sf

230411 PRE Prepared by Sebago Technics HydroCAD® 10.20-4c s/n 00643 © 2024 Hyd	<i>Type III 24-hr 10-YR Rainfall=4.60"</i> Printed 5/16/2025 droCAD Software Solutions LLC Page 5			
Time span=0.00-75.00 hrs, dt=0.01 hrs, 7501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method				
Subcatchment1.0S:	Runoff Area=290,070 sf 7.91% Impervious Runoff Depth=0.06" Flow Length=535' Tc=16.8 min CN=36 Runoff=0.0 cfs 1,401 cf			
Subcatchment2.0S:	Runoff Area=345,841 sf 8.15% Impervious Runoff Depth=0.06" Flow Length=441' Tc=17.6 min CN=36 Runoff=0.1 cfs 1,670 cf			
Link POA-1: POA-1	Inflow=0.0 cfs 1,401 cf Primary=0.0 cfs 1,401 cf			
Link POA-2: POA-2	Inflow=0.1 cfs 1,670 cf Primary=0.1 cfs 1,670 cf			
Total Runoff Area = 635,9	11 sf Runoff Volume = 3,071 cf Average Runoff Depth = 0.06" 91.96% Pervious = 584,787 sf 8.04% Impervious = 51,124 sf			

230411 PRE	Type III 24-hr 25-YR Rainfall=5.80"			
Prepared by Sebago Technics	Printed 5/16/2025			
HydroCAD® 10.20-4c s/n 00643 © 2024 Hyd	IroCAD Software Solutions LLC Page 6			
Time span=0.00-75.00 hrs, dt=0.01 hrs, 7501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method				
Subcatchment1.0S:	Runoff Area=290,070 sf 7.91% Impervious Runoff Depth=0.25"			
	Flow Length=535' Tc=16.8 min CN=36 Runoff=0.3 cfs 6,082 cf			
Subcatchment2.0S:	Runoff Area=345,841 sf 8.15% Impervious Runoff Depth=0.25" Flow Length=441' Tc=17.6 min CN=36 Runoff=0.4 cfs 7,251 cf			
Link POA-1: POA-1	Inflow=0.3 cfs 6,082 cf			
	Primary=0.3 cfs 6,082 cf			
Link POA-2: POA-2	Inflow=0.4 cfs 7,251 cf Primary=0.4 cfs 7,251 cf			
Total Runoff Area = 635,91 [,]	1 sf Runoff Volume = 13,333 cf Average Runoff Depth = 0.25" 91.96% Pervious = 584,787 sf 8.04% Impervious = 51,124 sf			

Summary for Subcatchment 1.0S:

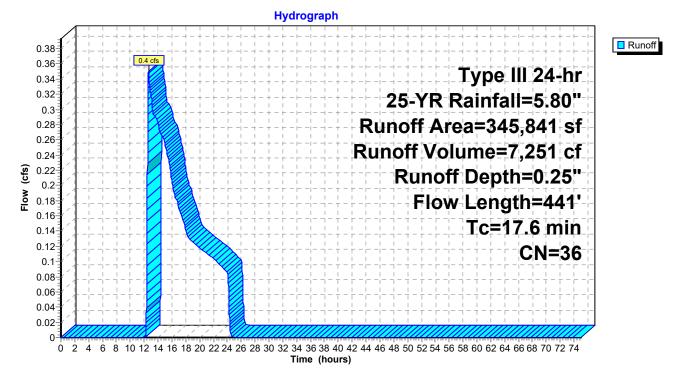

Runoff = 0.3 cfs @ 12.64 hrs, Volume= Routed to Link POA-1 : POA-1

6,082 cf, Depth= 0.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

A	rea (sf)	CN [Description		
	22,936	98 F	Paved parking, HSG A		
	3,903			ace, HSG A	
1	32,016			on-grazed,	
1	25,465		,	od, HSG A	
	5,750	39 >	•75% Gras	s cover, Go	ood, HSG A
2	90,070		Veighted A	0	
	67,134	-		rvious Area	
	22,936	7	'.91% Impe	ervious Are	а
_		~		a	
Tc	Length	Slope			Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.2	50	0.0400	0.09		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.30"
5.3	160	0.0100	0.50		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.6	135	0.0300	3.52		Shallow Concentrated Flow, C-D
4 7	400	0 0700	1.00		Paved Kv= 20.3 fps
1.7	190	0.0736	1.90		Shallow Concentrated Flow, D-E
					Short Grass Pasture Kv= 7.0 fps
16.8	535	Total			

Subcatchment 1.0S:

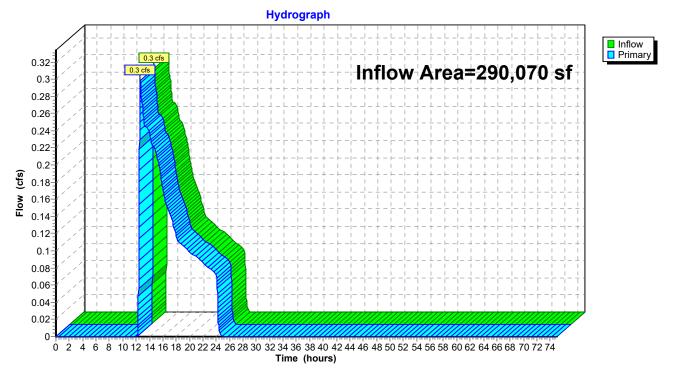

Summary for Subcatchment 2.0S:

Runoff = 0.4 cfs @ 12.65 hrs, Volume= 7,251 cf, Depth= 0.25" Routed to Link POA-2 : POA-2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

A	rea (sf)	CN D	escription		
	28,188	98 P	aved park	ing, HSG A	N Contraction of the second
3	17,653	30 V	loods, Go	od, HSG A	
3	45,841	36 V	Veighted A	verage	
3	17,653	9	1.85% Per	vious Area	
	28,188	8	.15% Impe	ervious Are	а
-		<u>.</u>		• ••	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.8	57	0.0440	0.10		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.30"
6.8	266	0.0170	0.65		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
1.0	118	0.1700	2.06		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
17.6	441	Total			

Subcatchment 2.0S:

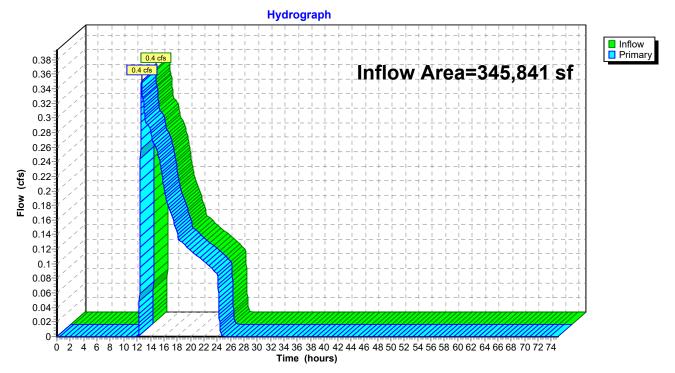


Summary for Link POA-1: POA-1

Inflow Area	a =	290,070 sf,	7.91% Impervious,	Inflow Depth = 0.25 "	for 25-YR event
Inflow	=	0.3 cfs @	12.64 hrs, Volume=	6,082 cf	
Primary	=	0.3 cfs @	12.64 hrs, Volume=	6,082 cf, Atte	en= 0%, Lag= 0.0 min

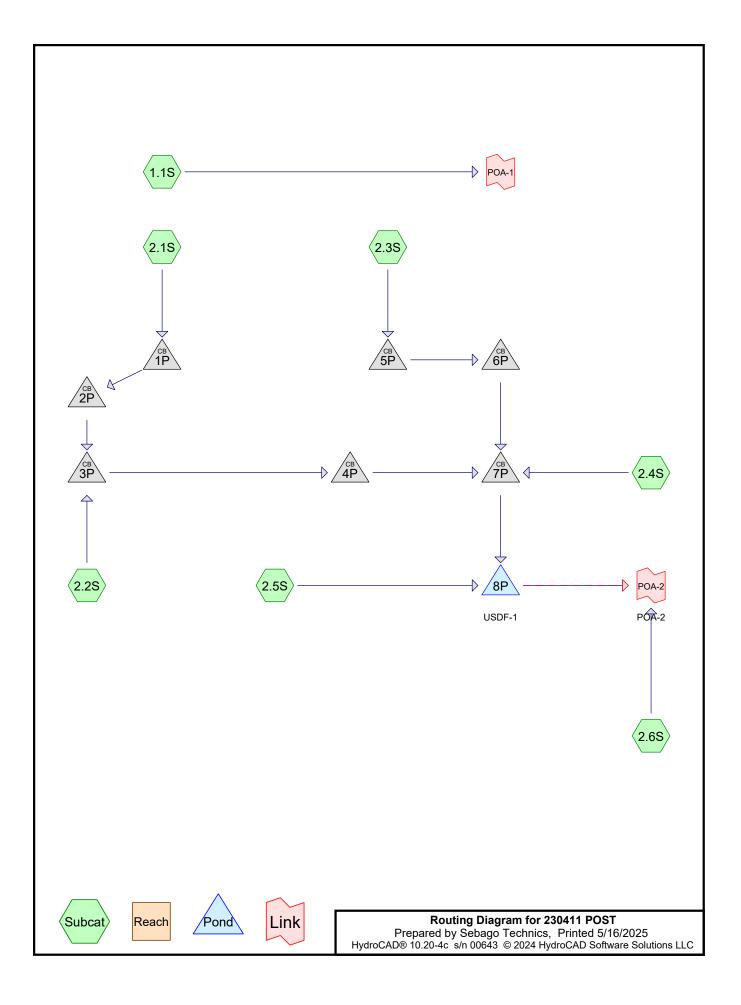
Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-1: POA-1



Summary for Link POA-2: POA-2

Inflow Area	a =	345,841 sf,	8.15% Impervious,	Inflow Depth = 0.25"	for 25-YR event
Inflow	=	0.4 cfs @	12.65 hrs, Volume=	7,251 cf	
Primary	=	0.4 cfs @	12.65 hrs, Volume=	7,251 cf, Atte	n= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-2: POA-2

Appendix 2B

Proposed Conditions HydroCAD Summary

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
21,215	39	>75% Grass cover, Good, HSG A (1.1S, 2.1S, 2.2S, 2.3S, 2.4S, 2.5S, 2.6S)
3,903	96	Gravel surface, HSG A (1.1S)
136,866	30	Meadow, non-grazed, HSG A (1.1S, 2.6S)
61,359	98	Paved parking, HSG A (1.1S, 2.1S, 2.2S, 2.3S, 2.4S, 2.6S)
412,568	30	Woods, Good, HSG A (1.1S, 2.6S)
635,911	37	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
635,911	HSG A	1.1S, 2.1S, 2.2S, 2.3S, 2.4S, 2.5S, 2.6S
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
635,911		TOTAL AREA

Time span=0.00-75.00 hrs, dt=0.01 hrs, 7501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1.1S:	Runoff Area=276,563 sf 4.34% Impervious Runoff Depth=0.00" Flow Length=490' Tc=23.4 min CN=34 Runoff=0.0 cfs 0 cf
Subcatchment2.1S:	Runoff Area=4,541 sf 91.59% Impervious Runoff Depth=2.35" Flow Length=96' Tc=6.0 min CN=93 Runoff=0.3 cfs 889 cf
Subcatchment2.2S:	Runoff Area=4,306 sf 68.72% Impervious Runoff Depth=1.33" Flow Length=30' Tc=6.0 min CN=80 Runoff=0.2 cfs 476 cf
Subcatchment2.3S:	Runoff Area=7,650 sf 92.55% Impervious Runoff Depth=2.45" Flow Length=35' Slope=0.0200 '/' Tc=6.0 min CN=94 Runoff=0.5 cfs 1,560 cf
Subcatchment2.4S:	Runoff Area=7,268 sf 95.93% Impervious Runoff Depth=2.65" Flow Length=134' Tc=6.0 min CN=96 Runoff=0.5 cfs 1,605 cf
Subcatchment2.5S:	Runoff Area=9,204 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=43' Slope=0.1800 '/' Tc=6.0 min CN=39 Runoff=0.0 cfs 0 cf
Subcatchment2.6S:	Runoff Area=326,379 sf 8.64% Impervious Runoff Depth=0.00" Flow Length=441' Tc=17.6 min CN=36 Runoff=0.0 cfs 0 cf
Pond 1P:	Peak Elev=316.13' Inflow=0.3 cfs 889 cf 12.0" Round Culvert n=0.013 L=74.0' S=0.0059 '/' Outflow=0.3 cfs 889 cf
Pond 2P:	Peak Elev=315.61' Inflow=0.3 cfs 889 cf 12.0" Round Culvert n=0.013 L=20.0' S=0.0060 '/' Outflow=0.3 cfs 889 cf
Pond 3P:	Peak Elev=315.44' Inflow=0.4 cfs 1,365 cf 12.0" Round Culvert n=0.013 L=142.0' S=0.0060 '/' Outflow=0.4 cfs 1,365 cf
Pond 4P:	Peak Elev=314.52' Inflow=0.4 cfs 1,365 cf 12.0" Round Culvert n=0.013 L=142.0' S=0.0060 '/' Outflow=0.4 cfs 1,365 cf
Pond 5P:	Peak Elev=315.04' Inflow=0.5 cfs 1,560 cf 12.0" Round Culvert n=0.013 L=96.0' S=0.0100 '/' Outflow=0.5 cfs 1,560 cf
Pond 6P:	Peak Elev=314.06' Inflow=0.5 cfs 1,560 cf 12.0" Round Culvert n=0.013 L=32.0' S=0.0100 '/' Outflow=0.5 cfs 1,560 cf
Pond 7P:	Peak Elev=313.86' Inflow=1.4 cfs 4,530 cf 15.0" Round Culvert n=0.013 L=37.0' S=0.0059 '/' Outflow=1.4 cfs 4,530 cf
Pond 8P: USDF-1	Peak Elev=313.74' Storage=2,628 cf Inflow=1.4 cfs 4,530 cf Primary=0.0 cfs 4,530 cf Secondary=0.0 cfs 0 cf Outflow=0.0 cfs 4,530 cf
Link POA-1:	Inflow=0.0 cfs 0 cf Primary=0.0 cfs 0 cf

Link POA-2: POA-2

Inflow=0.0 cfs 4,530 cf Primary=0.0 cfs 4,530 cf

Total Runoff Area = 635,911 sf Runoff Volume = 4,530 cf Average Runoff Depth = 0.09" 90.35% Pervious = 574,552 sf 9.65% Impervious = 61,359 sf

Time span=0.00-75.00 hrs, dt=0.01 hrs, 7501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1.1S:	Runoff Area=276,563 sf 4.34% Impervious Runoff Depth=0.03" Flow Length=490' Tc=23.4 min CN=34 Runoff=0.0 cfs 590 cf
Subcatchment2.1S:	Runoff Area=4,541 sf 91.59% Impervious Runoff Depth=3.81" Flow Length=96' Tc=6.0 min CN=93 Runoff=0.4 cfs 1,440 cf
Subcatchment2.2S:	Runoff Area=4,306 sf 68.72% Impervious Runoff Depth=2.55" Flow Length=30' Tc=6.0 min CN=80 Runoff=0.3 cfs 914 cf
Subcatchment2.3S:	Runoff Area=7,650 sf 92.55% Impervious Runoff Depth=3.91" Flow Length=35' Slope=0.0200 '/' Tc=6.0 min CN=94 Runoff=0.8 cfs 2,495 cf
Subcatchment2.4S:	Runoff Area=7,268 sf 95.93% Impervious Runoff Depth=4.14" Flow Length=134' Tc=6.0 min CN=96 Runoff=0.7 cfs 2,505 cf
Subcatchment2.5S:	Runoff Area=9,204 sf 0.00% Impervious Runoff Depth=0.13" Flow Length=43' Slope=0.1800 '/' Tc=6.0 min CN=39 Runoff=0.0 cfs 97 cf
Subcatchment2.6S:	Runoff Area=326,379 sf 8.64% Impervious Runoff Depth=0.06" Flow Length=441' Tc=17.6 min CN=36 Runoff=0.1 cfs 1,576 cf
Pond 1P:	Peak Elev=316.22' Inflow=0.4 cfs 1,440 cf 12.0" Round Culvert n=0.013 L=74.0' S=0.0059 '/' Outflow=0.4 cfs 1,440 cf
Pond 2P:	Peak Elev=315.73' Inflow=0.4 cfs 1,440 cf 12.0" Round Culvert n=0.013 L=20.0' S=0.0060 '/' Outflow=0.4 cfs 1,440 cf
Pond 3P:	Peak Elev=315.57' Inflow=0.7 cfs 2,354 cf 12.0" Round Culvert n=0.013 L=142.0' S=0.0060 '/' Outflow=0.7 cfs 2,354 cf
Pond 4P:	Peak Elev=314.68' Inflow=0.7 cfs 2,354 cf 12.0" Round Culvert n=0.013 L=142.0' S=0.0060 '/' Outflow=0.7 cfs 2,354 cf
Pond 5P:	Peak Elev=315.15' Inflow=0.8 cfs 2,495 cf 12.0" Round Culvert n=0.013 L=96.0' S=0.0100 '/' Outflow=0.8 cfs 2,495 cf
Pond 6P:	Peak Elev=314.27' Inflow=0.8 cfs 2,495 cf 12.0" Round Culvert n=0.013 L=32.0' S=0.0100 '/' Outflow=0.8 cfs 2,495 cf
Pond 7P:	Peak Elev=314.27' Inflow=2.2 cfs 7,354 cf 15.0" Round Culvert n=0.013 L=37.0' S=0.0059 '/' Outflow=2.2 cfs 7,354 cf
Pond 8P: USDF-1	Peak Elev=314.27' Storage=4,914 cf Inflow=2.2 cfs 7,451 cf Primary=0.0 cfs 7,451 cf Secondary=0.0 cfs 0 cf Outflow=0.0 cfs 7,451 cf
Link POA-1:	Inflow=0.0 cfs 590 cf Primary=0.0 cfs 590 cf

Link POA-2: POA-2

Inflow=0.1 cfs 9,027 cf Primary=0.1 cfs 9,027 cf

Total Runoff Area = 635,911 sf Runoff Volume = 9,617 cf Average Runoff Depth = 0.18" 90.35% Pervious = 574,552 sf 9.65% Impervious = 61,359 sf

230411 POST	Ту
Prepared by Sebago Technics	
HvdroCAD® 10.20-4c s/n 00643 © 2024 HvdroCAD Software Solu	tions LLC

Time span=0.00-75.00 hrs, dt=0.01 hrs, 7501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1.1S:	Runoff Area=276,563 sf 4.34% Impervious Runoff Depth=0.17" Flow Length=490' Tc=23.4 min CN=34 Runoff=0.1 cfs 3,973 cf
Subcatchment2.1S:	Runoff Area=4,541 sf 91.59% Impervious Runoff Depth=4.99" Flow Length=96' Tc=6.0 min CN=93 Runoff=0.6 cfs 1,887 cf
Subcatchment2.2S:	Runoff Area=4,306 sf 68.72% Impervious Runoff Depth=3.60" Flow Length=30' Tc=6.0 min CN=80 Runoff=0.4 cfs 1,292 cf
Subcatchment2.3S:	Runoff Area=7,650 sf 92.55% Impervious Runoff Depth=5.10" Flow Length=35' Slope=0.0200 '/' Tc=6.0 min CN=94 Runoff=1.0 cfs 3,250 cf
Subcatchment2.4S:	Runoff Area=7,268 sf 95.93% Impervious Runoff Depth=5.33" Flow Length=134' Tc=6.0 min CN=96 Runoff=0.9 cfs 3,227 cf
Subcatchment2.5S:	Runoff Area=9,204 sf 0.00% Impervious Runoff Depth=0.39" Flow Length=43' Slope=0.1800 '/' Tc=6.0 min CN=39 Runoff=0.0 cfs 299 cf
Subcatchment2.6S:	Runoff Area=326,379 sf 8.64% Impervious Runoff Depth=0.25" Flow Length=441' Tc=17.6 min CN=36 Runoff=0.3 cfs 6,843 cf
Pond 1P:	Peak Elev=316.29' Inflow=0.6 cfs 1,887 cf 12.0" Round Culvert n=0.013 L=74.0' S=0.0059 '/' Outflow=0.6 cfs 1,887 cf
Pond 2P:	Peak Elev=315.82' Inflow=0.6 cfs 1,887 cf 12.0" Round Culvert n=0.013 L=20.0' S=0.0060 '/' Outflow=0.6 cfs 1,887 cf
Pond 3P:	Peak Elev=315.67' Inflow=1.0 cfs 3,179 cf 12.0" Round Culvert n=0.013 L=142.0' S=0.0060 '/' Outflow=1.0 cfs 3,179 cf
Pond 4P:	Peak Elev=314.82' Inflow=1.0 cfs 3,179 cf 12.0" Round Culvert n=0.013 L=142.0' S=0.0060 '/' Outflow=1.0 cfs 3,179 cf
Pond 5P:	Peak Elev=315.23' Inflow=1.0 cfs 3,250 cf 12.0" Round Culvert n=0.013 L=96.0' S=0.0100 '/' Outflow=1.0 cfs 3,250 cf
Pond 6P:	Peak Elev=314.55' Inflow=1.0 cfs 3,250 cf 12.0" Round Culvert n=0.013 L=32.0' S=0.0100 '/' Outflow=1.0 cfs 3,250 cf
Pond 7P:	Peak Elev=314.55' Inflow=2.9 cfs 9,656 cf 15.0" Round Culvert n=0.013 L=37.0' S=0.0059 '/' Outflow=2.9 cfs 9,656 cf
Pond 8P: USDF-1	Peak Elev=314.55' Storage=6,231 cf Inflow=2.9 cfs 9,955 cf Primary=0.1 cfs 9,955 cf Secondary=0.0 cfs 0 cf Outflow=0.1 cfs 9,955 cf
Link POA-1:	Inflow=0.1 cfs 3,973 cf Primary=0.1 cfs 3,973 cf

Link POA-2: POA-2

Inflow=0.4 cfs 16,798 cf Primary=0.4 cfs 16,798 cf

Total Runoff Area = 635,911 sf Runoff Volume = 20,772 cfAverage Runoff Depth = 0.39"90.35% Pervious = 574,552 sf9.65% Impervious = 61,359 sf

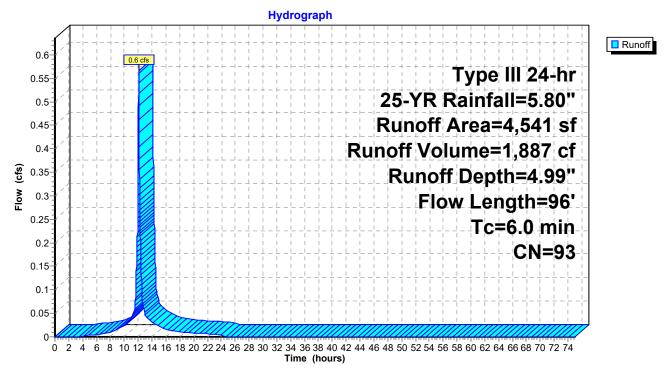

Summary for Subcatchment 1.1S:

Runoff = 0.1 cfs @ 14.07 hrs, Volume= 3,973 cf, Depth= 0.17" Routed to Link POA-1 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

A	rea (sf)	CN D	Description		
	12,000	98 P	aved park	ing, HSG A	
	3,903	96 G	Gravel surfa	ace, HSG A	N Contraction of the second seco
	9,266			,	ood, HSG A
1	19,494	30 V	Voods, Go	od, HSG A	
1	31,900	30 N	leadow, no	on-grazed,	HSG A
2	276,563	34 V	Veighted A	verage	
2	264,563	9	5.66% Per	rvious Area	
	12,000	4	.34% Impe	ervious Area	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.3	50	0.0300	0.08		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.30"
12.8	385	0.0100	0.50		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
0.3	55	0.2000	3.13		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
23.4	490	Total			

Subcatchment 1.1S:

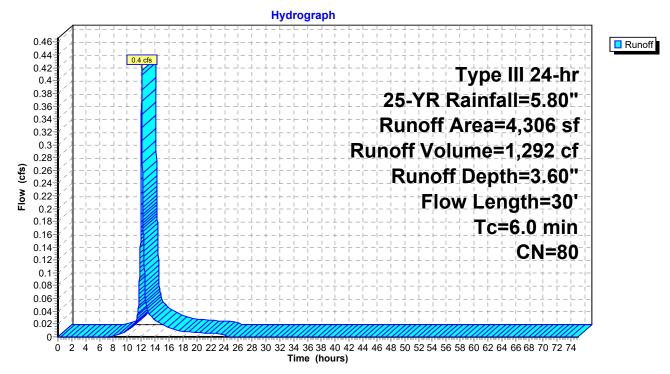

Summary for Subcatchment 2.1S:

Runoff = 0.6 cfs @ 12.08 hrs, Volume= 1,887 cf, Depth= 4.99" Routed to Pond 1P :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

	Α	rea (sf)	CN E	Description		
		4,159	98 F	aved park	ing, HSG A	N
_		382	39 >	75% Gras	s cover, Go	bod, HSG A
		4,541	93 V	Veighted A	verage	
		382	8	.41% Perv	ious Area	
		4,159	ç	1.59% Imp	pervious Ar	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	30	0.0200	1.10		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 3.30"
	0.4	66	0.0160	2.57		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
	5.1					Direct Entry, Direct Entry
	6.0	96	Total			

Subcatchment 2.1S:

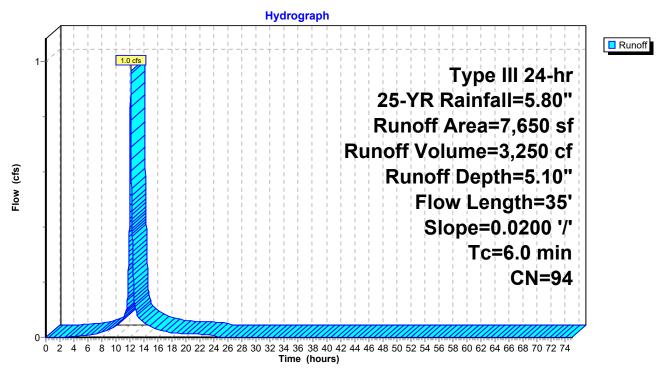

Summary for Subcatchment 2.2S:

Runoff = 0.4 cfs @ 12.09 hrs, Volume= 1,292 cf, Depth= 3.60" Routed to Pond 3P :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN [Description		
		2,959	98 F	Paved park	ing, HSG A	N N N N N N N N N N N N N N N N N N N
_		1,347	39 >	75% Ġras	s cover, Go	bod, HSG A
		4,306	80 V	Veighted A	verage	
		1,347	3	31.28% Pei	vious Area	
		2,959	6	8.72% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	17	0.0200	0.98		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 3.30"
	0.1	13	0.0160	2.57		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
_	5.6					Direct Entry,
	6.0	30	Total			

Subcatchment 2.2S:

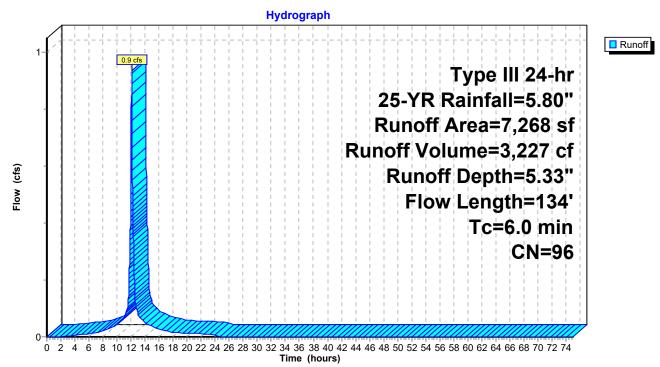

Summary for Subcatchment 2.3S:

Runoff	=	1.0 cfs @	12.08 hrs,	Volume=	3,250 cf,	Depth= 5.10"
Routed	to Pond 5	5P:				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

A	rea (sf)	CN [Description					
	570	39 >	>75% Gras	s cover, Go	ood, HSG A			
	7,080	98 F	Paved park	ing, HSG A	L			
	7,650	94 \	Neighted A	verage				
	570	7	7.45% Perv	vious Area				
	7,080	ę	92.55% Imp	pervious Ar	ea			
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.5	35	0.0200	1.13		Sheet Flow, A-B			
					Smooth surfaces	n= 0.011	P2= 3.30"	
5.5					Direct Entry,			
6.0	35	Total						

Subcatchment 2.3S:

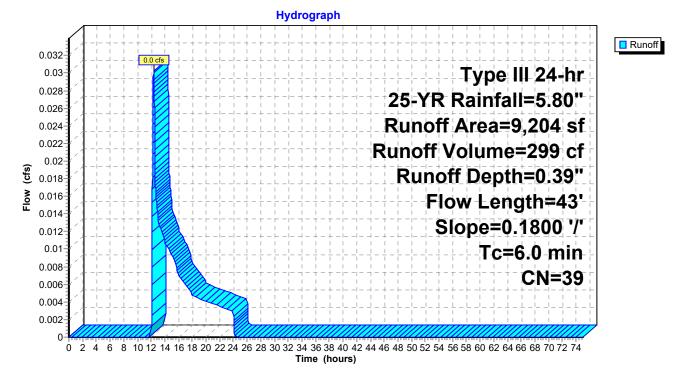

Summary for Subcatchment 2.4S:

Runoff = 0.9 cfs @ 12.08 hrs, Volume= 3,227 cf, Depth= 5.33" Routed to Pond 7P :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN [Description		
		6,972	98 F	Paved park	ing, HSG A	\
_		296	39 >	-75% Gras	s cover, Go	bod, HSG A
		7,268	96 V	Veighted A	verage	
		296	4	.07% Perv	vious Area	
		6,972	ç	95.93% Imp	pervious Ar	ea
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	16	0.0200	0.97		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 3.30"
	0.6	118	0.0280	3.40		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
_	5.1					Direct Entry,
	6.0	134	Total			

Subcatchment 2.4S:


Summary for Subcatchment 2.5S:

Runoff = 0.0 cfs @ 12.37 hrs, Volume= 299 cf, Depth= 0.39" Routed to Pond 8P : USDF-1

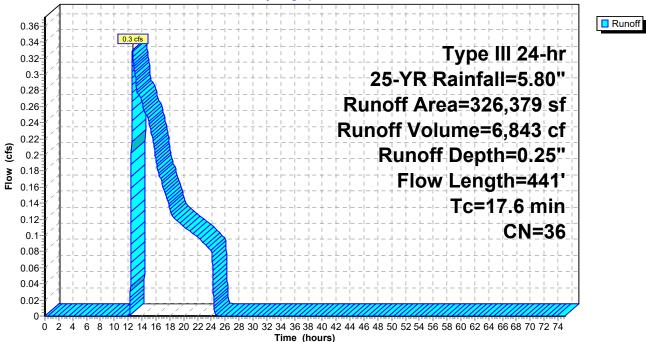
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN I	Description					
		9,204	39 :	>75% Gras	s cover, Go	ood, HSG A			
_		9,204	·	100.00% Pe	ervious Are	a			
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	3.0	43	0.1800	0.24		Sheet Flow,			
						Grass: Dense	n= 0.240	P2= 3.30"	
_	3.0					Direct Entry,			
	6.0	43	Total						

Subcatchment 2.5S:

Summary for Subcatchment 2.6S:

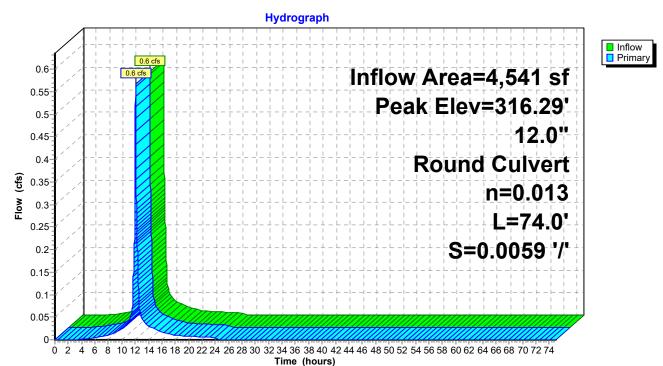
Runoff = 0.3 cfs @ 12.65 hrs, Volume= Routed to Link POA-2 : POA-2 6,843 cf, Depth= 0.25"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.80"

_	A	rea (sf)	CN D	escription					
		28,189	98 P	aved park	ing, HSG A	N .			
	2	93,074	30 V	Voods, Go	od, HSG A				
		150			,	bod, HSG A			
_		4,966	30 N	Meadow, non-grazed, HSG A					
		26,379		Veighted A					
		98,190	-		vious Area				
		28,189	8	.64% Impe	ervious Area	а			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	l l			
	9.8	57							
		57	0.0440	0.10		Sheet Flow, A-B			
		57	0.0440	0.10		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.30"			
	6.8	266	0.0440 0.0170	0.10 0.65		•			
				0.65		Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
						Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D			
_	6.8	266	0.0170	0.65		Woods: Light underbrush n= 0.400 P2= 3.30" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			

17.6 441 Total

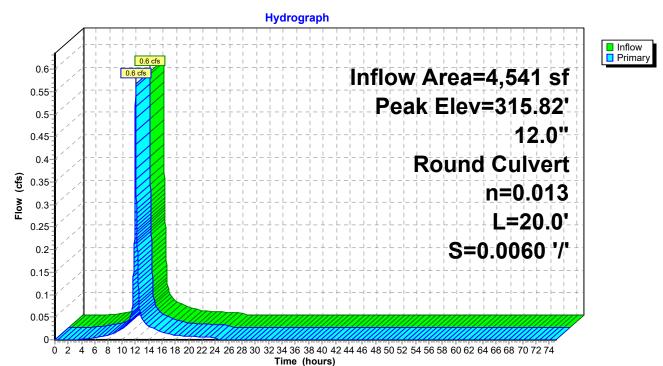
Subcatchment 2.6S:


Hydrograph

Summary for Pond 1P:

Inflow Area = 4,541 sf, 91.59% Impervious, Inflow Depth = 4.99" for 25-YR event Inflow 0.6 cfs @ 12.08 hrs, Volume= 1.887 cf = 0.6 cfs @ 12.08 hrs, Volume= Outflow 1,887 cf, Atten= 0%, Lag= 0.0 min = Primary = 0.6 cfs @ 12.08 hrs, Volume= 1,887 cf Routed to Pond 2P : Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 316.29' @ 12.09 hrs Flood Elev= 319.55' Device Routing Invert **Outlet Devices** #1 Primary 315.83' 12.0" Round Culvert L= 74.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 315.83' / 315.39' S= 0.0059 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.6 cfs @ 12.08 hrs HW=316.28' TW=315.82' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.6 cfs @ 2.38 fps)

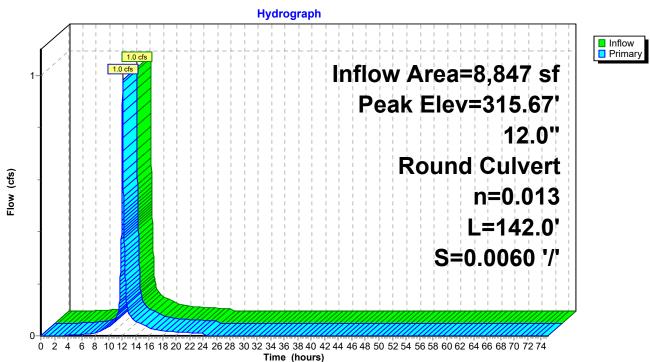


Pond 1P:

Summary for Pond 2P:

Inflow Area = 4,541 sf, 91.59% Impervious, Inflow Depth = 4.99" for 25-YR event Inflow 0.6 cfs @ 12.08 hrs, Volume= 1.887 cf = 0.6 cfs @ 12.08 hrs, Volume= Outflow 1,887 cf, Atten= 0%, Lag= 0.0 min = Primary = 0.6 cfs @ 12.08 hrs, Volume= 1,887 cf Routed to Pond 3P : Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 315.82' @ 12.09 hrs Flood Elev= 318.40' Device Routing Invert **Outlet Devices** #1 Primary 315.29' 12.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 315.29' / 315.17' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.6 cfs @ 12.08 hrs HW=315.82' TW=315.67' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.6 cfs @ 1.91 fps)

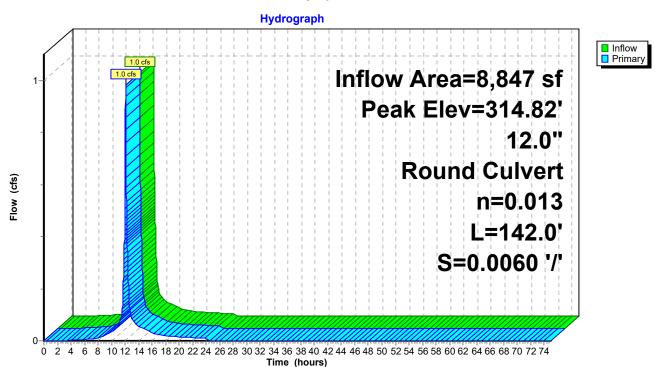


Pond 2P:

Summary for Pond 3P:

Inflow Area = 8,847 sf, 80.46% Impervious, Inflow Depth = 4.31" for 25-YR event Inflow 1.0 cfs @ 12.09 hrs, Volume= 3.179 cf = 1.0 cfs @ 12.09 hrs, Volume= Outflow 3,179 cf, Atten= 0%, Lag= 0.0 min = 1.0 cfs @ 12.09 hrs, Volume= Primary = 3,179 cf Routed to Pond 4P : Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 315.67' @ 12.09 hrs Flood Elev= 318.30' Device Routing Invert Outlet Devices #1 Primary 315.07' 12.0" Round Culvert L= 142.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 315.07' / 314.22' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.0 cfs @ 12.09 hrs HW=315.67' TW=314.81' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.0 cfs @ 2.85 fps)

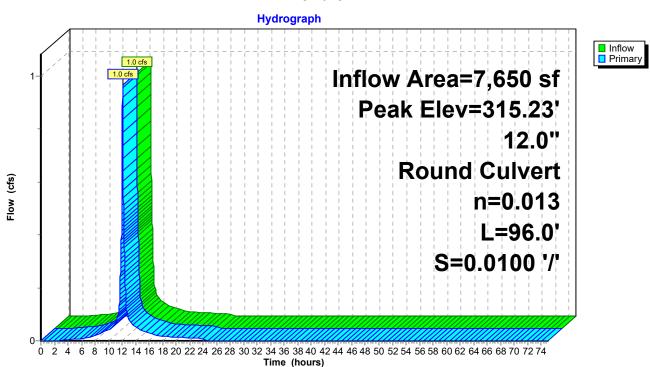


Pond 3P:

Summary for Pond 4P:

Inflow Area = 8,847 sf, 80.46% Impervious, Inflow Depth = 4.31" for 25-YR event Inflow 1.0 cfs @ 12.09 hrs, Volume= 3.179 cf = 1.0 cfs @ 12.09 hrs, Volume= Outflow 3,179 cf, Atten= 0%, Lag= 0.0 min = 1.0 cfs @ 12.09 hrs, Volume= Primary = 3,179 cf Routed to Pond 7P : Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 314.82' @ 12.09 hrs Flood Elev= 321.00' Device Routing Invert Outlet Devices #1 Primary 314.12' 12.0" Round Culvert L= 142.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 314.12' / 313.27' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

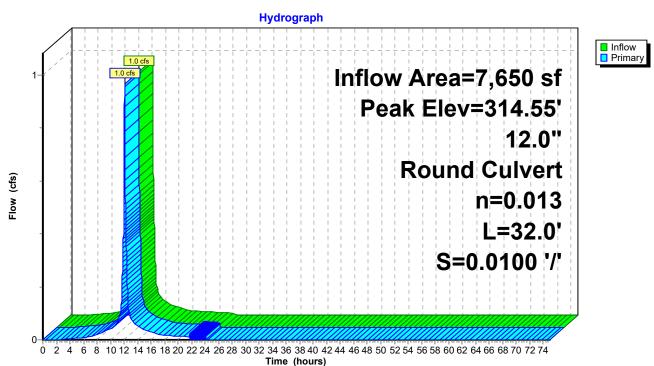
Primary OutFlow Max=1.0 cfs @ 12.09 hrs HW=314.81' TW=314.28' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.0 cfs @ 2.35 fps)



Summary for Pond 5P:

Inflow Area = 7,650 sf, 92.55% Impervious, Inflow Depth = 5.10" for 25-YR event Inflow 1.0 cfs @ 12.08 hrs, Volume= 3.250 cf = 1.0 cfs @ 12.08 hrs, Volume= Outflow 3,250 cf, Atten= 0%, Lag= 0.0 min = Primary = 1.0 cfs @ 12.08 hrs, Volume= 3,250 cf Routed to Pond 6P: Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 315.23' @ 12.08 hrs Flood Elev= 320.25' Device Routing Invert Outlet Devices #1 Primary 314.65' 12.0" Round Culvert L= 96.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 314.65' / 313.69' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

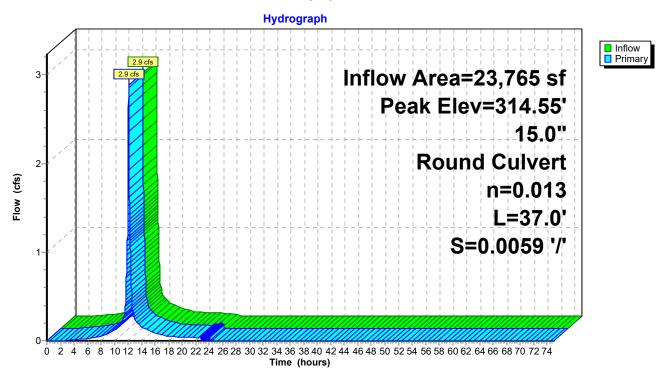
Primary OutFlow Max=1.0 cfs @ 12.08 hrs HW=315.23' TW=314.42' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.0 cfs @ 2.05 fps)



Summary for Pond 6P:

Inflow Area = 7,650 sf, 92.55% Impervious, Inflow Depth = 5.10" for 25-YR event Inflow 1.0 cfs @ 12.08 hrs, Volume= 3.250 cf = 1.0 cfs @ 12.08 hrs, Volume= Outflow 3,250 cf, Atten= 0%, Lag= 0.0 min = Primary = 1.0 cfs @ 12.08 hrs, Volume= 3,250 cf Routed to Pond 7P : Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 314.55' @ 14.59 hrs Flood Elev= 317.75' Device Routing Invert Outlet Devices #1 Primary 313.59' 12.0" Round Culvert L= 32.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 313.59' / 313.27' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.9 cfs @ 12.08 hrs HW=314.42' TW=314.28' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.9 cfs @ 1.79 fps)



Summary for Pond 7P:

Inflow A Inflow	rea = =		9.08% Impervious, Inflow Depth = 4.88" for 25-YR event 2.08 hrs, Volume= 9,656 cf
	=	<u> </u>	2.08 hrs, Volume= 9,656 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.9 cfs @ 1	2.08 hrs, Volume= 9,656 cf
Rout	ed to Pond 8	8P : USDF-1	
Peak El		@ 14.58 hrs	Time Span= 0.00-75.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	313.17'	15.0" Round Culvert L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 313.17' / 312.95' S= 0.0059 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

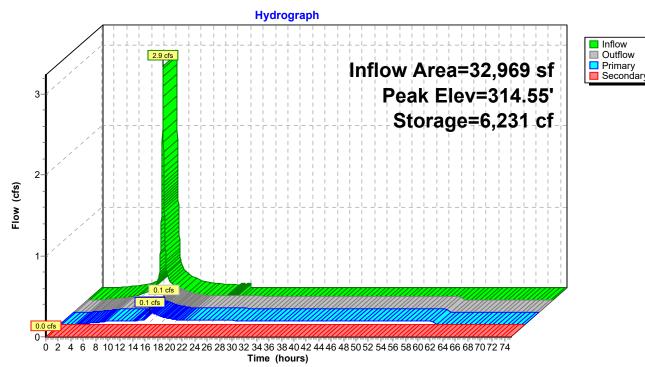
Primary OutFlow Max=2.8 cfs @ 12.08 hrs HW=314.28' TW=313.86' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 2.8 cfs @ 3.22 fps)

Summary for Pond 8P: USDF-1

Inflow Area = 32,969 sf, 64.21% Impervious, Inflow Depth = 3.62" for 25-YR event Inflow = 2.9 cfs @ 12.08 hrs, Volume= 9.955 cf 0.1 cfs @ 14.58 hrs, Volume= 0.1 cfs @ 14.58 hrs, Volume= Outflow 9,955 cf, Atten= 95%, Lag= 150.0 min = Primary = 9,955 cf Routed to Link POA-2 : POA-2 Secondary = 0.0 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link POA-2 : POA-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs Peak Elev= 314.55' @ 14.58 hrs Surf.Area= 4,801 sf Storage= 6,231 cf Flood Elev= 317.50' Surf.Area= 6,968 sf Storage= 20,572 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1,052.5 min (1,831.3 - 778.8)

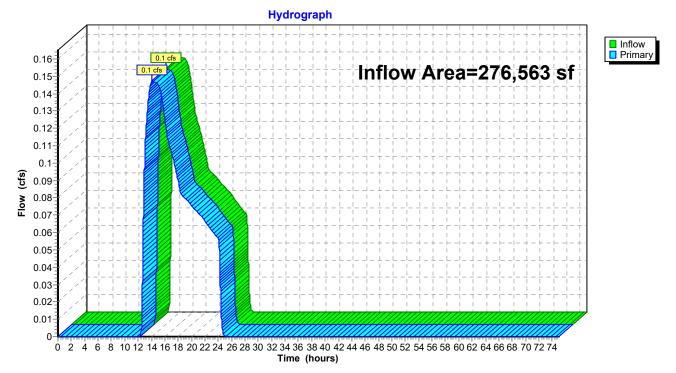

Volume	Invert	Avai	il.Stor	age	Storage Descript	tion	
#1 310.83' 20,5		20,57	2 cf	Custom Stage I	Data (Prismatic)	Listed below (Recalc)	
Elevatio	on Su	rf.Area	Voic	s	Inc.Store	Cum.Store	
(fee		(sq-ft)	(%		(cubic-feet)	(cubic-feet)	
310.8	33	3,000	0.	/	0		
312.9		3,000	0.		0	0	
313.0	00	3,000	100.		30	30	
314.0	00	4,348	100.	0	3,674	3,704	
315.0	00	5,168	100.		4,758	8,462	
316.0		6,042	100.		5,605	14,067	
317.0	00	6,968	100.	0	6,505	20,572	
Device	Routing	In	vert	Outl	et Devices		
#1	Primary	310).73'	12.0	" Round Outlet	Pipe	
	-			L= 8	2.0' CPP, projec	ting, no headwal	ll, Ke= 0.900
				Inlet	/ Outlet Invert= 3	10.73' / 310.30'	S= 0.0052 '/' Cc= 0.900
							rior, Flow Area= 0.79 sf
#2	Device 1						ited to weir flow at low heads
#3	Device 2						area Phase-In= 0.01'
#4	Device 1	314	.50'	-			X 29.00 C= 0.600
шг	0	040			ted to weir flow at		ata di Dalatan avulan Misin
#5	Secondary	316	6.50'				sted Rectangular Weir
					3.00 3.50 4.00		0 1.20 1.40 1.60 1.80 2.00
							2.68 2.68 2.67 2.64 2.64
					2.65 2.64 2.65		
					2.00 2.01 2.00	2.00 2.00 2.01	

Primary OutFlow Max=0.1 cfs @ 14.58 hrs HW=314.55' TW=0.00' (Dynamic Tailwater) **1=Outlet Pipe** (Passes 0.1 cfs of 5.4 cfs potential flow)

2=UD Orifice (Orifice Controls 0.1 cfs @ 9.24 fps) **3=Infiltration** (Passes 0.1 cfs of 0.3 cfs potential flow)

4=Beehive Grate (Orifice Controls 0.1 cfs @ 0.74 fps)

Secondary OutFlow Max=0.0 cfs @ 0.00 hrs HW=310.83' TW=0.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

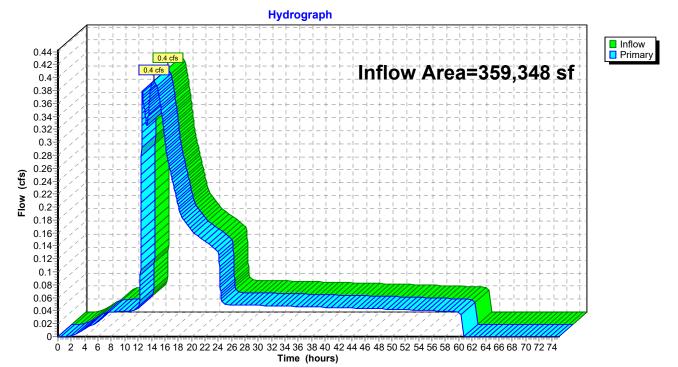

Pond 8P: USDF-1

Summary for Link POA-1:

Inflow Area	a =	276,563 sf,	4.34% Impervious,	Inflow Depth = 0.17"	for 25-YR event
Inflow	=	0.1 cfs @	14.07 hrs, Volume=	3,973 cf	
Primary	=	0.1 cfs @	14.07 hrs, Volume=	3,973 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-1:



Summary for Link POA-2: POA-2

Inflow Area	a =	359,348 sf,	13.74% Impervious,	Inflow Depth = 0.56"	for 25-YR event
Inflow	=	0.4 cfs @	14.41 hrs, Volume=	16,798 cf	
Primary	=	0.4 cfs @	14.41 hrs, Volume=	16,798 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.01 hrs

Link POA-2: POA-2

Appendix 3

Inspection, Maintenance and Housekeeping Plan

INSPECTION, MAINTENANCE, AND HOUSEKEEPING PLAN

For: Franklin Drive Subdivision Windham, ME

By: Sebago Technics, Inc. 75 John Roberts Road, Suite 4A South Portland, Maine

Introduction

The following plan outlines the anticipated inspection and maintenance procedures for the erosion and sedimentation control measures as well as stormwater management facilities for the project. This plan also outlines several housekeeping requirements that shall be followed during and after construction. These procedures shall be followed in order to ensure the intended function of the designed measures and to prevent unreasonably adverse impacts to the surrounding environment.

The procedures outlined in this Inspection, Maintenance and Housekeeping Plan are provided as an overview of the anticipated practices to be used on this site. In some instances, additional measures may be required due to unexpected conditions. For additional detail on any of the erosion and sedimentation control measures or stormwater management devices to be utilized on this project, refer to the most recently revised edition of the "Maine Erosion and Sedimentation Control BMP" manual and/or the "Stormwater Management for Maine: Best Management Practices" manual as published by the Maine Department of Environmental Protection (MDEP).

During Construction

- 1. **Inspection:** During the construction process, it is the Contractor's responsibility to comply with the inspection and maintenance procedures outlined in this section. These responsibilities include inspecting disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. These areas shall be inspected at least once a week as well as before and after a storm event (0.5" of rainfall), and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in any applicable permits, shall conduct the inspections.
- 2. **Maintenance:** All measures shall be maintained in an effective operating condition until areas are permanently stabilized. If Best Management Practices (BMPs) need to be maintained or modified, additional BMPs are necessary, or other corrective action is needed, implementation must be completed within 7 calendar days and prior to any storm event (0.5" of rainfall).
- 3. **Documentation:** A log summarizing the inspections and any corrective action taken must be maintained on-site. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, material storage areas, and vehicle access points to the site. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where

additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

4. **Specific Inspection and Maintenance Tasks:** The following is a list of erosion control and stormwater management measures and the specific inspection and maintenance tasks to be performed during construction.

A. <u>Sediment Barriers:</u>

- Hay bale barriers, silt fences, and filter berms shall be inspected immediately after each rainfall and at least daily during prolonged rainfall.
- If the fabric on a silt fence or filter barrier should decompose or become ineffective prior to the end of the expected usable life and the barrier is still necessary, it shall be replaced.
- Sediment deposits should be removed after each storm event (0.5" of rainfall). They must be removed before deposits reach approximately one-half the height of the barrier.
- Filter berms shall be reshaped as needed.
- Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required should be dressed to conform to the existing grade, prepared, and seeded.
- B. <u>Riprap Materials:</u>
 - Once a riprap installation has been completed, it should require very little maintenance. It shall, however, be inspected periodically to determine if high flows have caused scour beneath the riprap or dislodged any of the stone.
- C. <u>Erosion Control Blankets:</u>
 - Inspect these reinforced areas semi-annually and after significant rainfall events for slumping, sliding, seepage, and scour. Pay close attention to unreinforced areas adjacent to the erosion control blankets, which may experience accelerated erosion.
 - Review all applicable inspection and maintenance procedures recommended by the specific blanket manufacturer. These tasks shall be included in addition to the requirements of this plan.
- D. <u>Stabilized Construction Entrances/Exits:</u>
 - The exit shall be maintained in a condition that will prevent tracking of sediment onto public rights-of-way.
 - When the control pad becomes ineffective, the stone shall be removed along with the collected soil material. The entrance should then be reconstructed.
 - Areas that have received mud-tracking or sediment deposits shall be swept or washed. Washing shall be done on an area stabilized with aggregate, which drains into an approved sediment-trapping device (not into storm drains, ditches, or

waterways).

- E. <u>Temporary Seed and Mulch:</u>
 - Mulched areas should be inspected after rain events to check for rill erosion.
 - If less than 90% of the soil surface is covered by mulch, additional mulch shall be applied in bare areas.
 - In applications where seeding and mulch have been applied in conjunction with erosion control blankets, the blankets must be inspected after rain events for dislocation or undercutting.
 - Mulch shall continue to be reapplied until 95% of the soil surface has established temporary vegetative cover.
- F. <u>Stabilized Temporary Drainage Swales:</u>
 - Sediment accumulation in the swale shall be removed once the cross section of the swale is reduced by 25%.
 - The swales shall be inspected after rainfall events. Any evidence of sloughing of the side slopes or channel erosion shall be repaired and corrective action should be taken to prevent reoccurrence of the problem.
 - In addition to the stabilized lining of the channel (i.e. erosion control blankets), stone check dams may be needed to further reduce channel velocity.
- 5. **Housekeeping:** The following general performance standards apply to the proposed project.
 - A. <u>Spill prevention</u>: Controls must be used to prevent pollutants from being discharged from materials on-site, including storage practices to minimize exposure of the materials to stormwater, and appropriate spill prevention, containment, and response planning and implementation.
 - B. <u>Groundwater protection</u>: During construction, liquid petroleum products and other hazardous materials with the potential to contaminate groundwater may not be stored or handled in areas of the site draining to an infiltration area. An "infiltration area" is any area of the site that by design or as a result of soils, topography and other relevant factors, accumulates runoff that infiltrates into the soil. Dikes, berms, sumps, and other forms of secondary containment that prevent discharge to groundwater may be used to isolate portions of the site for the purposes of storage and handling of these materials.
 - C. <u>Fugitive sediment and dust</u>: Actions must be taken to ensure that activities do not result in noticeable erosion of soils or fugitive dust emissions during or after construction. Oil may not be used for dust control.
 - D. <u>Debris and other materials</u>: Litter, construction debris, and chemicals exposed to stormwater must be prevented from becoming a pollutant source.
 - E. <u>Trench or foundation dewatering</u>: Trench dewatering is the removal of water from trenches, foundations, cofferdams, ponds, and other areas within the construction area that retain water after excavation. In most cases, the collected water is heavily silted

and hinders correct and safe construction practices. The collected water must be removed from the ponded area, either through gravity or pumping, and must be spread through natural wooded buffers or removed to areas that are specifically designed to collect the maximum amount of sediment possible, like a cofferdam sedimentation basin. Avoid allowing the water to flow over disturbed areas of the site. Equivalent measures may be taken if approved.

Post-Construction

- 1. **Inspection:** After construction, it is the responsibility of the owner or assigned heirs to comply with the inspection and maintenance procedures outlined in this section. All measures must be maintained in effective operating condition. The owner shall inspect and maintain the BMPs, including but not limited to any parking areas, catch basins, drainage swales, detention basins and ponds, pipes and related structures, in accordance with all municipal and state inspection, cleaning and maintenance requirements of the approved post-construction stormwater management plan.
- 2. **Specific Inspection and Maintenance Tasks:** The following is a list of permanent erosion control and stormwater management measures and the inspection and maintenance tasks to be performed after construction. If the BMP requires maintenance, repair or replacement to function as intended by the approved post-construction stormwater management plan, the owner or operator of the BMP shall take corrective action(s) to address the deficiency or deficiencies as soon as possible after the deficiency is discovered and shall provide a record of the deficiency and corrective action(s) to the local municipality in the annual report.
 - A. <u>Vegetated Areas:</u>
 - Inspect vegetated areas, particularly slopes and embankments, early in the growing season or after heavy rains (>0.5") to identify active or potential erosion problems.
 - Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
 - B. <u>Ditches, Swales and Other Open Channels:</u>
 - Inspect ditches, swales, level spreaders and other open stormwater channels in the spring, in the late fall, and after heavy rains to remove any obstructions to flow. Remove accumulated sediments and debris, remove woody vegetative growth that could obstruct flow, and repair any erosion of the ditch lining.
 - Vegetated ditches must be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity.
 - Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable.
 - If the ditch has a riprap lining, replace riprap in areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged.

C. <u>Culverts:</u>

- Inspect culverts in the spring, in the late fall, and after heavy rains (>0.5") to remove any obstructions to flow.
- Remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit.
- Inspect and repair any erosion damage at the culvert's inlet and outlet.

D. <u>Removal of Winter Sand:</u>

- Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring.
- Accumulations on pavement may be removed by pavement sweeping.
- Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader or other acceptable method.

E. <u>Underdrained Soil Filters:</u>

- The basin should be inspected semi-annually and following major storm events. Debris and sediment buildup should be removed from the forebay and basin as needed. Any bare area or erosion rills should be repaired with new filter media, seeded and mulched.
- A legal entity should be established with responsibility for inspecting and maintaining any underdrained filter. The legal agreement establishing the entity should list specific maintenance responsibilities (including timetables) and provide for the funding to cover long-term inspection and maintenance.
- The filter should within 24 to 48 hours following a one-inch storm or greater. If the system drains too fast, an orifice may need to be added on the underdrain outlet or may need to be modified if already present.
- Sediment and plant debris should be removed from the pretreatment structure at least annually.
- If mowing is desired, only hand-held string trimmers or push-mowers are allowed on the filter (no tractor) and the grass bed should be mowed no more than 2 times per growing season to maintain grass heights of no less than 6 inches.
- Fertilization of the underdrained filter area should be avoided unless absolutely necessary to establish vegetation.
- Harvesting and pruning of excessive growth should be done occasionally. Weeding to control unwanted or invasive plants may also be necessary.
- Maintaining a healthy cover of grass will minimize clogging with fine sediments. If ponding exceeds 48 hours, the top of the filter bed should be rototilled to reestablish the soil's filtration capacity.
- The top several inches of the filter can be replaced with fresh material if water is ponding for more than 72 hours, or the basin can be rototilled, seeded and mulched. Once the filter is mature, adding new material (a 1-inch to 2-inch cover of mature compost) can compensate for subsidence.

3. Documentation:

- A. The owner or operator of a BMP or a qualified post-construction stormwater inspector hired by that person, shall, as required by the local municipality, provide a completed and signed certification on a form provided by the local municipality, certifying that the person has inspected the BMP(s) and that they are adequately maintained and functioning as intended by the approved post-construction stormwater management plan, or that they required maintenance or repair, including the record of the deficiency and corrective action(s) taken.
- B. A log summarizing the inspections and any corrective action taken must be maintained. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of controls. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. A sample "Stormwater Inspection and Maintenance Form" has been included as Attachment 1 of this Inspection, Maintenance, and Housekeeping Plan.
- 4. Duration of Maintenance: Perform maintenance as described and required for any associated permits unless and until the system is formally accepted by a municipality or quasi-municipal district, or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system. If a municipality or quasi-municipal district chooses to accept a stormwater management system, or a component of a stormwater system, it must provide a letter to the MDEP stating that it assumes responsibility for the system. The letter must specify the components of the system for which the municipality or district will assume responsibility, and that the municipality or district agrees to maintain those components of the system in compliance with MDEP standards. Upon such assumption of responsibility and approval by the MDEP, the municipality, quasi-municipal district, or association becomes a copermittee for this purpose only and must comply with all terms and conditions of the permit.

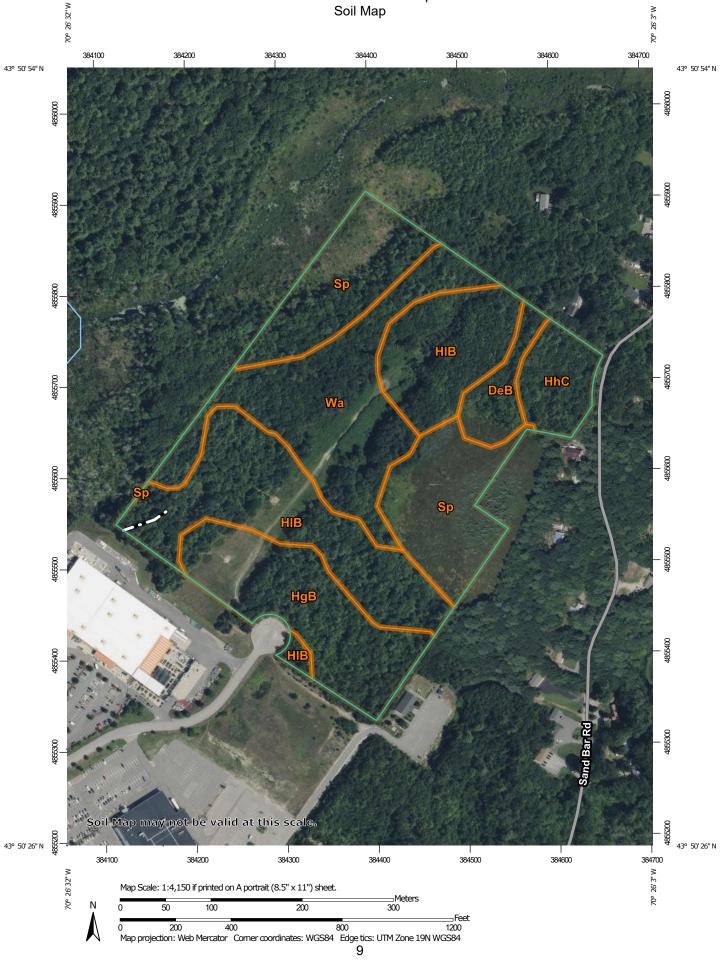
ATTACHMENT 1 – STORMWATER INSPECTION AND MAINTENANCE LOG

Franklin Drive Subdivision 20 Franklin Drive Windham, Maine

This log is intended to accompany the Inspection, Maintenance, and Housekeeping Plan for the land parcel subdivision and extension of Franklin Drive in Windham, Maine. The following items shall be checked, cleaned, and maintained on a regular basis as specified in the Maintenance Plan and as described in the sections below. This log shall be kept on file for a minimum of five (5) years and shall be available for review by the Town of Windham and the Maine DEP. Qualified personnel familiar with the drainage systems and soils shall perform all inspections. A copy of the construction and post-construction maintenance logs are provided.

General Site

	INSPECTION MAINTEN	ANCE AND HOUSEKEEPING FORM	
General Information			
Project Name:		Inspection Date:	
Project Location:		Current Weather:	
		Date / Amount Last Precip:	
BMP Owner:		Company conducting inspection:	
Owner Mailing Address:		Company Mailing Address	
Owner Phone #:		Company Phone #:	
Owner Email:		Inspector Name:	
		Inspector Email:	
Site Element	Suggested Maintenance (recm'd frequency)	Observations	Inspection Notes/Recommended Action
Vegetated Areas	Inspect Slopes/Embankments for erosion (annually)		
	Replant bare areas or areas of sparse growth (annually)		
Ditches/Swales	Remove obstructions/debris/sediment (monthly)		
	Inspect for erosion/repair as needed (annually)		
	Remove woody vegetation (annually)		
	Mow vegetated ditches (annually)		
Catch Basins	Remove sediment/debris from sump (annually)		
	Remove accumulated debris from inlet grate		
Culverts	Remove sediment/debris from inlet/outlet aprons (annually)		
	Inspect inlet/outlet aprons for erosion, repair as needed (annually)		
	Inspect, repair as needed, riprap aprons for dislodged/sparse coverage (annually)		
Pipe Outlets	Remove sediment/debris from outlet aprons (annually)		
	Inspect outlet aprons for erosion, repair as needed (annually)		
Additional Notes/Observati	Inspect, repair as needed, riprap aprons for dislodged/sparse coverage (annually)		


Underdrain Soil Filter

		IANCE AND HOUSEKEEPING FORM	
General Information			
Project Name:		Inspection Date:	
Project Location:		Current Weather:	
		Date / Amount Last Precip:	
BMP Owner:		Company conducting inspection:	
Owner Mailing Address:		Company Mailing Address	
Owner Phone #:		Company Phone #:	
Owner Email:		Inspector Name:	
		Inspector Email:	
BMP Element	Suggested Maintenance (recm'd frequency)	Observations	Inspection Notes/Recommended Action
Forebay/Pretreatment	Sediment/Debris Removal (Annually)		
	Inspect for bare areas or rill erosion (Annually)		
Outlet Control Structure	Sediment Depth (Annually)		
	Floatables/Debris (Annually)		
Discharge Pipe	Ground Stabilized (>1" rain, Annually)		
Emergency Spillway	Review for signs of erosion (Twice Annually)		
	Review for signs of discharge (>1" rain, twice annually)		
Embankments	Review for signs of erosion (Twice Annually)		
Filter Bed	Trim overgrown vegetation with string trimmer (annually)		
	Review basin for evidence of vehicular traffic or storage of snow within footprint (annually)		
	Confirm pond drains in 24-48 hours for water quality volume (annually)		

Appendix 4

Subsurface Investigations

Custom Soil Resource Report Soil Map

MAP LEGEND				MAP INFORMATION			
	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.			
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points	©0 ♥ △	Very Stony Spot Wet Spot Other	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil			
Special Point Features Blowout Borrow Pit		Water Fea	Special Line Features ures Streams and Canals	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.			
⊠)× ⊘	Clay Spot Closed Depression	Transport	t ation Rails Interstate Highways	Please rely on the bar scale on each map sheet for map measurements.			
*	Gravel Pit Gravelly Spot Landfill	~	US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)			
© بلا س	Lava Flow Marsh or swamp	Backgrou	Local Roads Ind Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.			
* 0 0	Mine or Quarry Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.			
× + ∷	Rock Outcrop Saline Spot Sandy Spot			Soil Survey Area: Cumberland County and Part of Oxford County, Maine Survey Area Data: Version 20, Sep 5, 2023			
⊕ ◊	Severely Eroded Spot Sinkhole			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 22, 2021—Oct 7,			
¢ Ø	Slide or Slip Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background			

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI					
DeB	Deerfield loamy fine sand, 3 to 8 percent slopes	1.5	4.0%					
НgВ	Hermon sandy loam, 3 to 8 percent slopes	6.1	15.8%					
HhC	Hermon sandy loam, 8 to 15 percent slopes, very stony	2.1	5.4%					
HIB	Hinckley loamy sand, 3 to 8 percent slopes	12.0	31.2%					
Sp	Sebago mucky peat	8.6	22.2%					
Wa	Walpole fine sandy loam	8.3	21.4%					
Totals for Area of Interest		38.6	100.0%					

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Cumberland County and Part of Oxford County, Maine

DeB—Deerfield loamy fine sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2xfg9 Elevation: 0 to 1,190 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Deerfield and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Outwash deltas, outwash terraces, outwash plains, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap - 0 to 9 inches: loamy fine sand Bw - 9 to 25 inches: loamy fine sand BC - 25 to 33 inches: fine sand Cg - 33 to 60 inches: sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: A Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

HgB—Hermon sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2w9r8 Elevation: 0 to 950 feet Mean annual precipitation: 31 to 65 inches Mean annual air temperature: 36 to 52 degrees F Frost-free period: 90 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Hermon and similar soils: 90 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hermon

Setting

Landform: Mountains, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Mountainbase, interfluve, base slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly supraglacial meltout till derived from granite and gneiss

Typical profile

Ap - 0 to 9 inches: sandy loamBs1 - 9 to 16 inches: very gravelly sandy loamBs2 - 16 to 32 inches: extremely gravelly loamy sandC - 32 to 65 inches: very gravelly coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F144BY601ME - Dry Sand Hydric soil rating: No

HhC—Hermon sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w9rd Elevation: 0 to 1,080 feet Mean annual precipitation: 31 to 65 inches Mean annual air temperature: 36 to 52 degrees F Frost-free period: 90 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Hermon, very stony, and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hermon, Very Stony

Setting

Landform: Mountains, hills
 Landform position (two-dimensional): Summit, shoulder, backslope
 Landform position (three-dimensional): Mountainbase, mountainflank, side slope, nose slope, interfluve
 Down-slope shape: Convex
 Across-slope shape: Convex
 Parent material: Sandy and gravelly supraglacial meltout till derived from granite and gneiss
 Typical profile

Oa - 0 to 2 inches: highly decomposed plant material

E - 2 to 3 inches: sandy loam

Bhs - 3 to 9 inches: sandy loam

Bs1 - 9 to 16 inches: very gravelly sandy loam

Bs2 - 16 to 32 inches: extremely gravelly loamy sand

C - 32 to 65 inches: very gravelly coarse sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.03 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A *Ecological site:* F144BY601ME - Dry Sand *Hydric soil rating:* No

HIB—Hinckley loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svm8 Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Hinckley and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Outwash deltas, outwash terraces, kames, kame terraces, moraines, eskers, outwash plains

- Landform position (two-dimensional): Summit, shoulder, backslope, footslope
- *Landform position (three-dimensional):* Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Sp—Sebago mucky peat

Map Unit Setting

National map unit symbol: blk0 Elevation: 10 to 2,100 feet Mean annual precipitation: 34 to 48 inches Mean annual air temperature: 37 to 46 degrees F Frost-free period: 80 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Sebago and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sebago

Setting

Landform: Bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Organic material

Typical profile

Oe - 0 to 36 inches: mucky peat *Oi - 36 to 65 inches:* mucky peat

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 6.00 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Very high (about 18.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D Ecological site: F144BY230ME - Acidic Peat Wetland Complex Hydric soil rating: Yes

Wa—Walpole fine sandy loam

Map Unit Setting

National map unit symbol: blk7 Elevation: 0 to 540 feet Mean annual precipitation: 48 to 49 inches Mean annual air temperature: 45 to 46 degrees F Frost-free period: 145 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Walpole and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Walpole

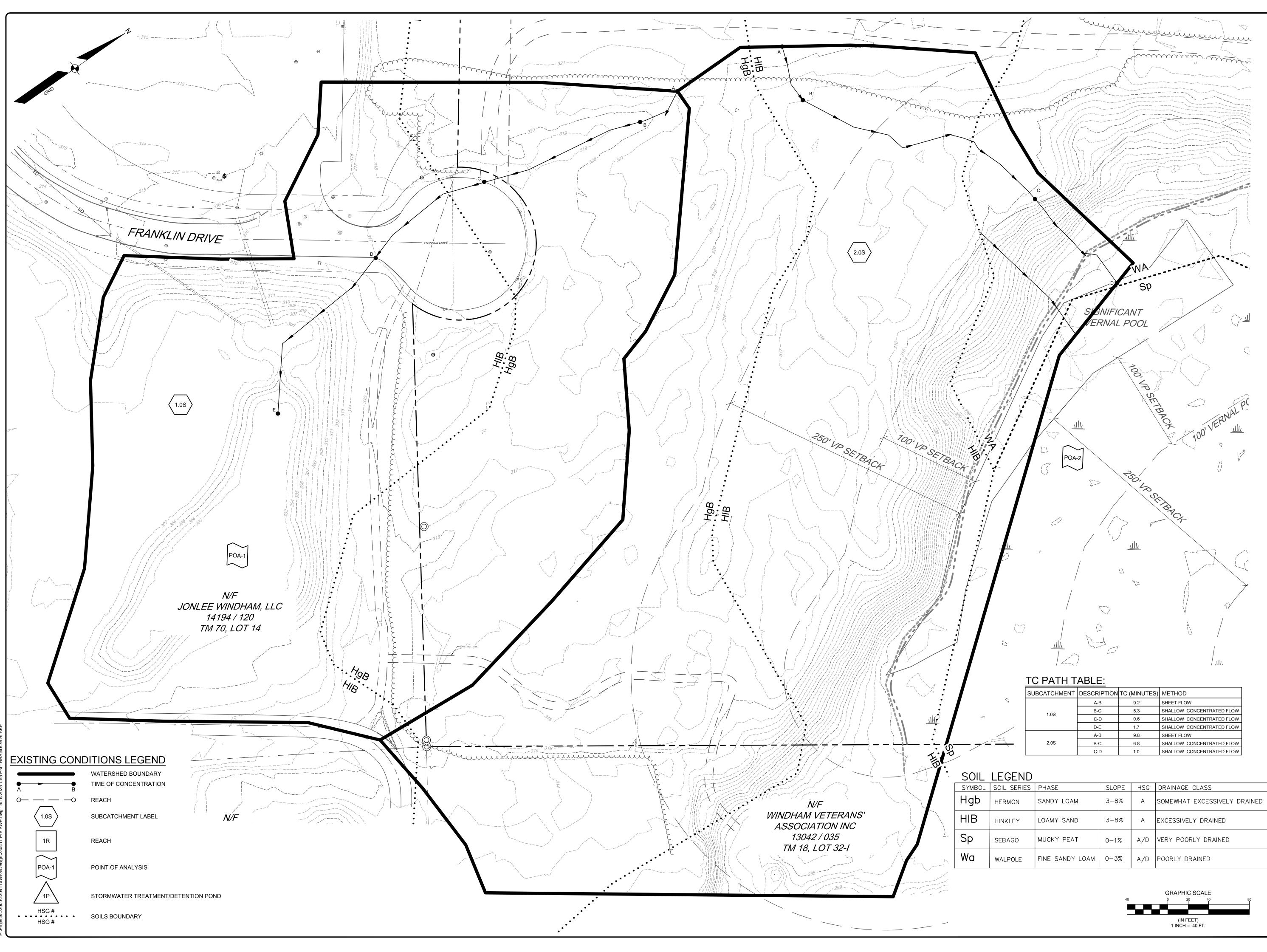
Setting

Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy glaciofluvial deposits

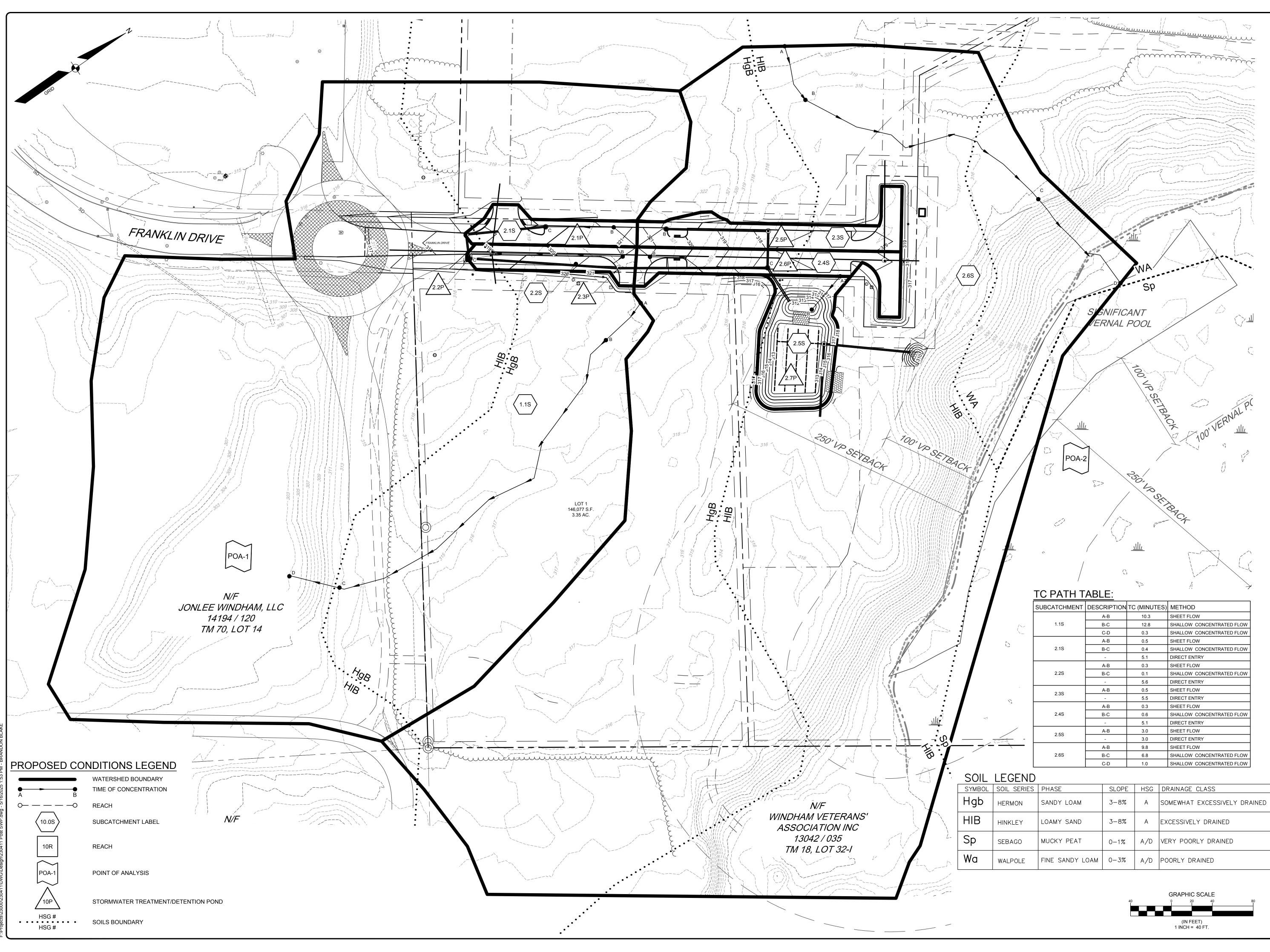
Typical profile

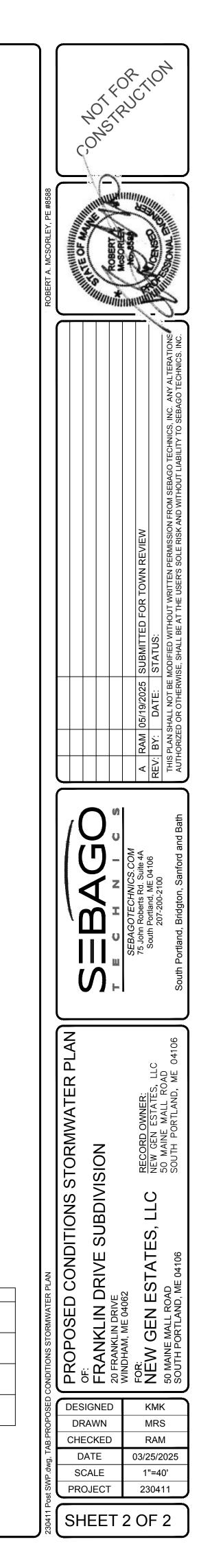
H1 - 0 to 8 inches: fine sandy loam H2 - 8 to 20 inches: fine sandy loam H3 - 20 to 65 inches: gravelly loamy sand

Properties and qualities


Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.7 inches)

Interpretive groups


Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Ecological site: F144BY303ME - Acidic Swamp Hydric soil rating: Yes


Appendix 5

Stormwater Management Plans

NOT FOR TION NOT FOR TION CONSTRUCTION										
ROBERT A. MCSORLEY, PE #8588										
				SEBAGOTECHNICS.COM	75 John Roberts Rd. Suite 4A A RAM 05/19/2025 SUBMITTED FOR TOWN REVIEW	South Portland, ME 04106 207-200-2100	THIS PLAN SHALL NOT BE MODIFIED WITHOUT WRITTEN PERMISSION FROM SEBAGO TECHNICS, INC. ANY ALTERATIONS South Portland, Bridgton, Sanford and Bath AUTHORIZED OR OTHERWISE, SHALL BE AT THE USER'S SOLE RISK AND WITHOUT LIABILITY TO SEBAGO TECHNICS. INC.			
		い	∎ +	SE	15					
230411 Pre SWP.dwg, TAB:EXISTING CONDITIONS STORMWATER PLAN	\equiv					NEW GEN EVIAIES, LLC	50 MAINE MALL ROAD SOUTH PORTLAND, ME 04106 SOUTH PORTLAND, ME 04106			
.dwg, TAB:EXISTING CC	DI CH [SIGNE RAWN ECKEI DATE CALE		0	N F)3/2	(MK //RS RAN 25/2	3 1 1025			
230411 Pre SWP	PR			1	23	304)F				

