Range: 107 miles (EPA approved range, the range depends on driving style and outdoor temperature)
Motor: 80 kW AC synchronous electric motor
Battery: 30 kWh lithium-ion (Li-ion)
Overall fuel economy: 106 MPG-e ($3.16 \mathrm{mi} / \mathrm{kWh}$)
Charging time: $25 \mathrm{mps} / 240 \mathrm{~V}$ - Level II Charger: 4.7 hours, DC Fastcharger: 30 min.
Warranty: $3 \mathrm{yr} / 36,000$ miles basic, $5 \mathrm{yr} / 60,000$ miles powertrain

Compared vehicle: Used Police Utility Vehicle: MPG 14/18

Scenario 1	\$1.86	Total Miles Driven annually	A.) 5,000 miles annually	
Assumptions:		Vehicle Type	2017 Nissan Leaf SV	Used Police Utility Vehicle
Gas Cost (\$ per gallon)		Gas Cost	\$0	\$580
Electricity Cost ($¢$ per kWh)	12.65	Electricity Cost	\$192	\$0
Nissan Leaf: $27 / 33 \mathrm{kWh} / 100$ miles		Maintenance \& Repair	\$371	\$1,389
Used Police Vehicle: 14/18 MPG		Annual Lease Payments	\$0	\$0
Highway Driving: 50\%		Insurance and Additional costs	\$1,200	\$1,200
City/Urban Driving 50\% Other trips: No				
		Total Annual Cost	\$1,762	\$3,169
		Gas used per year (gal)	0	312
		Electricity used per year (kWh)	1514	0
		Tailpipe C02 (in tons)	0	2.7
		Upstream C02 (in tons)	0.3	0.7
		Total C02 Emissions (in tons)	0.3	3.4
		Equivalent in trees	10	89
Scenario 2 Assumptions: Gas Cost (\$ per gallon) Electricity Cost (ϕ per kWh) Nissan Leaf: $27 / 33 \mathrm{kWh} / 100$ miles Used Police Vehicle: 14/18 MPG Highway Driving: 50\% City/Urban Driving 50\% Other trips: No		Total Miles Driven annually	A.) 5,000 miles annually	
		Vehicle Type	2017 Nissan Leaf SV	Used Police Utility Vehicle
	\$2.86	Gas Cost	\$0	\$892
	12.65	Electricity Cost	\$192	\$0
		Maintenance \& Repair	\$371	\$1,389
		Annual Lease Payments	\$0	\$0
		Insurance and other costs	\$1,200	\$1,200
		Total Annual Cost	\$1,762	\$3,481
		Gas used per year (gal)	0	312
		Electricity used per year (kWh)	1514	0
		Tailpipe C02 (in tons)	0	2.7
		Upstream C02 (in tons)	0.3	0.7
		Total C02 Emissions (in tons)	0.3	3.4
		Equivalent in trees	10	89

Scenario 3Assumptions:	\$3.50	Total Miles Driven annually	A.) 5,000 miles annually	
		Vehicle Type	2017 Nissan Leaf SV	Used Police Utility Vehicle
Gas Cost (\$ per gallon)		Gas Cost	\$0	\$1,092
Electricity Cost (\$ per kWh)	12.65	Electricity Cost	\$192	\$0
Nissan Leaf: $27 / 33 \mathrm{kWh} / 100$ miles		Maintenance \& Repair	\$371	\$1,389
Used Police Vehicle: 14/18 MPG		Annual Lease Payments	\$0	\$0
Highway Driving: 50\%		Insurance and other costs	\$1,200	\$1,200
City/Urban Driving 50\%				
Other trips: No		Total Annual Cost	\$1,762	\$3,681
		Gas used per year (gal)	0	312
		Electricity used per year (kWh)	1514	0
		Tailpipe C02 (in tons)	0	2.7
		Upstream C02 (in tons)	0.3	0.7
		Total C02 Emissions (in tons)	0.3	3.4
		Equivalent in trees	10	89

B.) 10,000 miles annually		C.) 15,000 miles annually	
2017 Nissan Leaf SV	Used Police Utility Vehicle	$\begin{gathered} 2017 \text { Nissan } \\ \text { Leaf SV } \\ \hline \end{gathered}$	Used Police Utility Vehicle
\$0	\$2,184	\$0	\$3,276
\$383	\$0	\$575	\$0
\$371	\$2,163	\$371	\$2,936
\$0	\$0	\$0	\$0
\$1,400	\$1,400	\$1,600	\$1,600
\$2,154	\$5,747	\$2,545	\$7,812
0	624	0	936
3028	0	4543	0
0	5.4	0	8.1
0.6	1.4	0.9	2.1
0.6	6.8	0.9	10.2
20	178	30	267

Scenario 1 - Total Annual Cost

- Insurance and Additional costs
- Annual Lease Payments
- Maintenance \& Repair
- Electricity Cost
- Gas Cost

Scenario 2 - Total Annual Cost

- Insurance and other costs
- Annual Lease Payments
- Maintenance \& Repair
- Electricity Cost
- Gas Cost

Scenario 3 - Total Annual Cost

Predicted reliability - NISSAN LEAF

Initial Quality - Overall	000003
Overall Quality - Mechanical	000003
Powertrain Quality - Mechanical	000005
Features and Accessories - Mechanical	000003.5
Body \& Interior Quality - Mechanical	000002.5
Overall Quality - Design	000003
Features and Accessories - Design	000003
Powertrain Quality - Design	000004.5
Body \& Interior - Design	000002.5

Ratings are based on J.D. Power's Initial Quality Study for the 2017 Nissan Leaf.

Conclusion:

The New England electricity grid is one of the cleanest in the country which is making Maine and New England one of the best regions to drive an EV from a clean fuel perspective. Leasing 2017 Nissan Leaf SV brings significant environmental benefits compared to a used conventional gas vehicle. In some cases it is also more economically viable. The total annual CO2 emissions for Nissan Leaf are on average 8-9 times lower than those produced by the compared convetional gas vehicle. The main limitation for Nissan Leaf is its range. This vehicle is suitable for multiple short distance trips

Additional Information \& Notes:

- Estimates for maintenance costs are based on engine type, class of car and driving habits.
- Cost equivalent MPG converts electrical energy usage of EV s to its equivalent in gasoline based on cost.
- Tailpipe CO_{2} includes emissions for gasoline calculated at $8.8 \mathrm{~kg} \mathrm{CO} / \mathrm{gal}$.
- Upstream CO_{2} for gasoline is calculated at $2.21 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{gal}$
- CO2 absorption is assumed as 38.6 kg per tree
- Source of data : U.S. Department of Energy - Vehicle Cost Calculator, http://www.afdc.energy.gov/calc/ and Befrugal https://www.befrugal.com/tools/electric-car-calculator/

