Town of Windham

Planning Department

8 School Road
Windham, ME 04062

Private Roads Ad Hoc Committee
Conference Room \#1, Town Office
7:00 PM - 9:00 PM, Wednesday July 25, 2018

AGENDA

1. Call to Order
2. Roll Call
3. Correspondence
4. Invitation For Public Comment
5. Old Business
A. Committee Contact Information
B. Private Roads Map (2015)
C. New Private Road Standard
a. Upgrade of Existing Private Road
b. Subdivision Private Road Standard For:
i. 11-20 Lots (Town Wide)
ii. Farm/Farm Residential Zones Regardless of Subdivision Size
D. Mineral Extraction Update \& Road Standard Discussion
E. Basis For Slope Standards
6. New Business
7. Dismiss

surface or private way it intersects. (6) A negative 2.0% grade from the existing edge of pavement must be provided to an appropriate drainage way what is no less than 5 feet from the travel (4) Angle must be maintained for at least 60^{\prime} from intersection.
(5) Maximum grade must be maintained for at least 60^{\prime} from the (3) See Section $911(\mathrm{M})(5)($ b) (6) for shoulder and sidewalk requirements (1) See Section 911(M) for street connection Requirements
(2) Add 8' of width for each lane of on-street parking Additional Standards

＊＊Material shall be HMA 9.5 mm ．
＊＊Material shall be Crushed Aggregate Base Course，Type A，or Reclaimed asphalt approved by the Public Works Department．
 ＊The Planning Board or Director of Public Works，as appropriate，may reduce the required depth of ASCG Type D from 27＂to 21＂if the applicant （\＃）＝Required number of courses Notes：

e／u	e／u	e／u	＂らて＇「－（z）	＂Sて＇t－（z）	＂¢で「－（z）	
e／u	e／u	e／u	＂OL	„01	„OL	
${ }^{\prime} \varepsilon$						ұиәшәлед snoulumı！g ұон
${ }_{\text {„ }} \varepsilon$						＊＊əs．n ${ }^{\text {a }}$
e／u						g әd \wedge_{\perp}
„8โ						$\square \partial \mathrm{d} \wedge_{\perp}$
						səsınoう əseg－qns әłeรัว ${ }^{\text {asib }}$
						uoddy pəлеd
e／u	e／u	e／u	${ }_{\text {＂}} \mathrm{S}^{\text {L }}$	e／u	${ }_{\text {＂}} \mathrm{S}^{\circ}$ T	
e／u	${ }_{\text {＂}}{ }^{\text {S }}$ L	e／u	e／u	${ }_{1} \mathrm{~S}^{\text {L }}$	e／u	
e／u	＂S＇乙	e／u	${ }_{\text {＂}} \times 1$ ¢	＂S＇Z	${ }^{\prime} S^{\prime} \varepsilon$	mu 0 ＇6I VWH＇əs．nno əseg
e／u	${ }_{\text {＂}} \mathrm{t}$	e／u	＂S	${ }_{\text {H }}{ }^{\text {b }}$	＂S	
${ }^{\text {．}}$ ع	${ }^{\text {¢ }}$ ع	${ }_{\text {＂}} \varepsilon$	${ }^{\text {¢ }}$ ¢	${ }^{\text {¢ }}$ ¢	${ }^{\text {．}}$ ¢	
${ }^{18} 8$	＂Lて	＂Iて	${ }^{\prime \prime} \angle 乙$	＂Lて	＂亡て	
ןəлел	рәлед	ןәлел	рәлед	рәлед	рәлед	әd／\wedge_{\perp} әэéuns
รұәәגł	дәәג¢	pxepuers	－шшог／＇pu｜	дәәれ碞	дәәれ碞	гепәтеш
әłenıld doulw	әұел！גd גо！ew	„əұе！рәшләұи｜＂		ןe3o גou！w	ן－307 nocew	

appropriate measures for protecting these resources, including but not limited to, modification of the proposed design of the site, timing of construction, and limiting the extent of excavation.

B. Vehicular Traffic

1. Adequacy of Road System. Vehicular access to the site shall be on roads which have adequate capacity to accommodate the additional traffic generated by the development. Intersections on arterial streets within a half (0.5) mile of any entrance road which are funetioning at a Level of Serviee of D or better prior to the development shall funetion at a minimum at Level of Serviee D after development. If any stch intersection is funetioning a a Level of Serviee Eor lower prior to the development, the projee shall not reduee the exment level of serviee. This requireme be by the Planing Boad if the project is loeated within a grow the are designated in the Town's adopted Comprehensive Plan and the Board determine that the project will not have an unnecessary adverse impact on fraffie flow safey.
(a) Intersections on arterial streets within a half (0.5) mile of any entrance road which are functioning at a Level of Service of D or better prior to the development shall function at a minimum at Level of Service D after development. If any such intersection is functioning at a Level of Service E or lower prior to the development, the project shall not reduce the current level of service. This requirement may be waived by the Planning Board if the project is located within a growth area designated in the Town's adopted Comprehensive Plan and the Board determines that the project will not have an unnecessary adverse impact on traffic flow or safety.A development not meeting this requirement may be approved if the applicant demonstrates that:
(1) A public agency has committed funds to construct the improvements necessary to bring the level of access to this standard, or
(2) The applicant will assume financial responsibility for the improvements necessary to bring the level of service to this standard and will assure the completion of the improvements with a financial guarantee acceptable to the municipality.
(b) Existing streets and intersections that can be expected to carry traffic generated by the development shall have the capacity or be suitably improved to accommodate that traffic. For the purposes of this section, suitably improved shall mean that all of the existing private ways in the road network back to the closest public street shall meet the applicable Street Construction Standard (See Section 300 Street Classification and Appendix B Street Design and Construction Standards).

CHAPTER SEVEN

GEOMETRIC DESIGN TABLES
 (New Construction/Reconstruction)

Volume I

- Highway Design Guide -

National Standards

Chapter Seven

TABLE OF CONTENTS

Page
Table 7-1 Geometric Design Criteria for Freeways 7-2
Footnotes to Table 7-1 7-3
Table 7-2 Geometric Design Criteria for Rural Arterials 7-4
Footnotes to Table 7-2 7-5
Table 7-3 Geometric Design Criteria for Rural Collector Roads 7-6
Footnotes to Table 7-3 7-7
Table 7-4 Geometric Design Criteria for Rural Local Roads 7-8
Footnotes to Table 7-4 7-9
Table 7-5 Geometric Design Criteria for Urban Arterial Roads/Streets 7-10
Footnotes to Table 7-5 7-11
Table 7-6 Geometric Design Criteria for Urban Collector Roads/Streets 7-12
Footnotes to Table 7-6 7-13
Table 7-7 Geometric Design Criteria for Urban Local Roads/Streets 7-14
Footnotes to Table 7-7 7-15

Chapter Seven

GEOMETRIC DESIGN TABLES (New Construction/Reconstruction)

This chapter presents the Department's criteria for the design of new construction and reconstruction projects. The designer should consider the following in the use of the tables:

1. Functional Classification. The selection of design values for new construction and reconstruction depends on the functional classification of the highway facility. This is discussed in Section 3-2. For Minor Arterial or Lower classifications see the State Standard Highway Design Guide.
2. Cross Section Elements. The designer should realize that some of the cross section elements included in a table (e.g., median width) are not automatically warranted in the project design. The values in the tables will only apply after the decision has been made to include the element in the highway cross section.
3. Manual Section References. These tables are intended to provide a concise listing of design values for easy use. However, the designer should review the manual section references for greater insight into the design elements.
4. Footnotes. The tables include many footnotes, which are identified by a number in parentheses (e.g., (6)). The information in the footnotes is critical to the proper use of the design tables.

* Controlling design criteria (See Section 3-7).

GEOMETRIC DESIGN CRITERIA FOR FREEWAYS
(New Construction/Reconstruction)
Table 7-1

GEOMETRIC DESIGN TABLES

GEOMETRIC DESIGN CRITERIA FOR FREEWAYS

(New Construction/Reconstruction)

Footnotes to Table 7-1

1. Shoulder Width (Left Shoulder). Where a concrete median barrier is used, the minimum left shoulder is 6^{\prime} for freeways with two lanes in one direction. For all freeways with three or more lanes in one direction, it is desirable to use a 10 ' left shoulder.
2. Auxiliary Lane Shoulders. Shoulder widths adjacent to auxiliary lanes should equal the shoulder width normally provided adjacent to the travel lane.
3. Median Width (Depressed). Median widths for depressed sections should be determined by field conditions (see Figure 6-7).
4. Clear Zone. Clear zone will vary according to design speed, traffic volume and side slope. See Section 10-1.
5. Depth of Ditch. A rounded ditch section should be used unless hydraulic capacity warrants the use of a trapezoidal ditch. See Figure 6-7. Maintain the depth of ditch 1 'below subgrade. If this criteria (1 ' below subgrade) determines the horizontal location of the ditch flow line, the calculated horizontal distance to the flow line will be rounded up to the next highest 6 inch increment.
6. Back Slope. The Department's typical practice is to place the toe of the back slope outside of the clear zone. See the typical section figures in Section 6-5 and the clear zone discussion in Section 10-1. In rock cuts, the back slope may be as steep as 4:1. See rock cut detail in Figure 6-7.
7. Fill Slope (Height: $0-20^{\prime}$). See Figure 6-7 for an illustration of the $6: 1 / 4: 1$ hinged fill slope. The hinge point will be placed at the subgrade intersection with the fill slope or at the clear zone distance, whichever is the greatest distance from the roadway. If a barrier is warranted on the fill slope (e.g., for roadside obstacles), use a 2:1 fill slope with guardrail. See Section 10-2 for roadside barrier warrants.
8. Minimum Stopping Sight Distance. If practical, values in the columns may be adjusted for grades (see Table 4-1).
9. Decision Sight Distance. The values provided are for a directional change (e.g., lane change) at the design speed. See Section 41 for decision sight distance values for other conditions.
10. Horizontal Sight Distance. For a given design speed, the necessary middle ordinate should be determined by the degree of curve and stopping sight distance (see Section 5-2).
11. Maximum Grades. Grades 1 percent steeper may be used in restricted urban areas where development precludes the use of flatter grades. Grades 1 percent steeper may also be used for one-way downgrades, except in mountainous terrain.
12. Minimum Vertical Clearance. The vertical clearances apply to the freeway passing under. For the 16 ' -6 " clearance, 6 " is provided for future resurfacing. The minimum vertical clearance is $17^{\prime}-6^{\prime \prime}$ for the freeway passing under a new pedestrian bridge or new sign truss. The clearance is $17^{\prime}-0^{\prime \prime}$ for the freeway passing under an existing pedestrian bridge or existing sign truss. A $22^{\prime}-6 "\left(\pm 6^{\prime \prime}\right)$ clearance, depending on actual site conditions, is required at railroad underpasses beneath the freeway.

Note that "existing overpassing bridges" refers to any bridge work which does not require the total replacement of both the substructure and superstructure. For example, a bridge deck rehabilitation would be considered an existing overpassing bridge for the purpose of determining the minimum vertical clearance.

The Bridge Program will make the final determination on the adequacy of existing or proposed vertical clearances

[^0]Table 7-2

GEOMETRIC DESIGN CRITERIA FOR RURAL ARTERIALS (New Construction/Reconstruction)

Footnotes to Table 7-2

1. Traffic Volumes. AADT and DHV values are projected to the design year, normally 20 years from the expected construction completion date.
2. Design Speed. For two-lane highways in mountainous terrain, a 50 mph design speed may be used. For all highways, the design speed should equal or exceed the anticipated posted or regulatory speed limit after construction.
3. Lane Widths. The following will apply:
a. For a 50 mph design speed and for AADT under 400 , lane widths may be 11 ' on two-lane highways.
b. Existing 11'lanes on reconstructed highways may be retained if alignment and safety record are satisfactory.
4. Shoulder Width (Curbed Facilities). On rural arterials where curbs are provided, it is desirable to increase a proposed 4'or 6' shoulder by an additional 2^{\prime}. Proposed 8^{\prime} or 10 ' shoulders do not need to be adjusted when curbs are introduced.
5. Auxiliary Lane Shoulders. Shoulder widths adjacent to auxiliary lanes should be 4'desirable and 2'minimum.
6. Median Width. Where medians are warranted, the width should be determined by design requirements and field conditions.
7. Clear Zone. Clear zone will vary according to design speed, traffic volume and side slope. See Section 10-1.
8. Depth of Ditch. A "V" ditch section should be used unless hydraulic capacity warrants the use of a trapezoidal ditch. Maintain the depth of ditch 1 ' below subgrade. If this criteria (1 ' below subgrade) determines the horizontal location of the ditch flow line, the calculated horizontal distance to the flow line will be rounded up to the next highest 6 " increment.
9. Back Slope. The Department's typical practice is to place the toe of the back slope outside of the clear zone. See the typical section figures in Section 6-5 and the clear zone discussion in Section 10-1. In rock cuts, the back slope may be as steep as 4:1. See rock cut detail in Figure 6-12.
10. Fill Slopes ($0-15^{\prime}$ Height). If guardrail is warranted for reasons other than the fill slope, use a $2: 1$ slope in combination with the guardrail rather than a $4: 1$ slope.
11. Minimum Stopping Sight Distance. If practical, values in the columns may be adjusted for grades (see Table 4-1).
12. Decision Sight Distance. The values provided are for a directional change (e.g., lane change) at the design speed. See Section 41 for decision sight distance values for other conditions.
13. Horizontal Sight Distance. For a given design speed, the necessary middle ordinate should be determined by the degree of curve and stopping sight distance (see Section 5-2).
14. Maximum Grades. Grades 1 percent steeper may be used on one-way downgrades on divided facilities.
15. Minimum Vertical Clearance. The vertical clearances apply to the arterial passing under. For the $16^{\prime}-6$ " clearance, 6 " is provided for future resurfacing. The minimum vertical clearance is $17^{\prime}-6^{\prime \prime}$ for the arterial passing under a new sign truss. The clearance is $17^{\prime}-0^{\prime \prime}$ for the arterial passing under an existing sign truss. A $22^{\prime}-6^{\prime \prime}\left(\pm 6^{\prime \prime}\right)$ clearance, depending on actual site conditions, is required at railroad underpasses beneath the arterial.

Note that "existing overpassing bridges" refers to any bridge work which does not require the total replacement of both the substructure and superstructure. For example, a bridge deck rehabilitation would be considered an existing overpassing bridge for the purpose of determining the minimum vertical clearance.

The Bridge Program will make the final determination on the adequacy of existing or proposed vertical clearances

Design Element		AADT (1)	Manual Section	Under 400	400-1500	1500-2000		Over 2000	
DESIGN CONTROLS	*Design Speed (2)	Level	3-4	40 mph	50 mph	50 mph		55-60 mph	
		Rolling	3-4	30 mph	40 mph	40 mph		50 mph	
		Mountainous	3-4	30 mph	30 mph	30 mph		40 mph	
	Access Control		3-5	Entrance Control					
	Level of Service		3-3	Desirable: B		Minimum: C			
$\begin{gathered} \text { CROSS } \\ \text { SECTION } \\ \text { ELEMENTS } \end{gathered}$	*Lane Width		6-1	10^{\prime}	11^{\prime}	11'		12^{\prime}	
	*Shoulder Width (3)		6-1	$4{ }^{\prime}$	6^{\prime}	8^{\prime}			
	Cross Slope	*Travel Lane	6-1	2.0\%					
		Shoulder	6-1	Paved: 4.0\%		Unpaved: 6.0\%			
	Auxiliary Lane Width (4)		6-1	10^{\prime}		11'			
	*New and Rehabilitated Bridges	Structural Capacity	\sim	SEE BRIDGE PROGRAM		SEE BRIDGE PROGRAM			
		Minimum Width	~						
	*Existing Bridges to Remain in Place	Structural Capacity	~						
		Minimum Width	\sim						
	Clear Zone		10-1	(5)					
	Side Slopes Cut Fill	Front Slope	6-3				1:4		
		Depth of Ditch	6-3	(6)					
		Back Slope	6-3	1:2 (7)					
		0-15' Height	6-3	1:3		1:4			
		>15 ' Height	6-3	1:2 (8)					
ALIGNMENT ELEMENTS	*Minimum Stopping Sight Distance (9)		4-1	30 mph	45 mph	50 mph	55 mph	60 mph	
			200'	$360{ }^{\prime}$	425 '	495'	$570{ }^{\prime}$		
	Passing Sight Distance			4-1	1090'	1625'	1835'	1985'	2135'
	Decision Sight Distance (10)		4-1	$450{ }^{\prime}$	675	$750{ }^{\prime}$	$865{ }^{\prime}$	990'	
	*Maximum Degree of Curve ($\mathrm{e}=6.0 \%$)		5-2	$21^{\circ} 00^{\prime}$	$8^{\circ} 45^{\prime}$	$6^{\circ} 45^{\prime}$	$5^{\circ} 15^{\prime}$	$4^{\circ} 15^{\prime}$	
	*Superelevation Rate		5-2	Table 5-6 ($\mathrm{e}_{\max }=6.0 \%$)					
	*Horizontal Sight Distance		5-2	(11)					
	*Maximum Profile Grades	Level	4-2	7\%	7\%	6\%	6\%	5\%	
		Rolling	4-2	9\%	8\%	7\%	7\%	6\%	
		Mountainous	4-2	10\%	10\%	9\%	9\%	8\%	
	Minimum Profile Grades		4-2	Desirable: 0.25%		Minimum: 0\%			
	*Minimum Vertical Clearance (12)	New and Replaced Overpassing Bridges	4-3	Desirable: 15'-6" $^{\prime \prime}$		Minimum: 15'-0"			
		Existing Overpassing Bridges	4-3	$14^{\prime}-0^{\prime \prime}$					

* Controlling design criteria (See Section 3-7).

GEOMETRIC DESIGN CRITERIA FOR RURAL COLLECTOR ROADS (New Construction/Reconstruction)

Footnotes to Table 7-3

1. Traffic Volumes. The AADT is determined for a future year, usually 20 years beyond the construction completion date.
2. Design Speed. Minimum values for design speed are presented. The designer should provide higher values where conditions allow. In addition, the design speed should equal or exceed the posted or regulatory speed limit of the completed facility.
3. Shoulder Width. The criteria refer to the paved shoulder width, if applicable, or to the graded shoulder width, if unpaved. The graded shoulder width is the distance between the edge of travel lane and the point of intersection of the shoulder slope and side slope.

On rural collectors where curbs are provided, it is desirable to increase a proposed 4^{\prime} or 6^{\prime} shoulder by an additional 2^{\prime}. Proposed 8' shoulders do not need to be adjusted when curbs are introduced.
4. Auxiliary Lane Shoulders. Shoulder widths adjacent to auxiliary lanes should be 4'desirable and 2'minimum.
5. Clear Zone. Clear zone will vary according to design speed, traffic volume and side slope. See Section 10-1.
6. Depth of Ditch. A "V" ditch section should be used unless hydraulic capacity warrants the use of a trapezoidal ditch. Maintain the depth of ditch 1 ' below subgrade. If this criteria (1 ' below subgrade) determines the horizontal location of the ditch flow line, the calculated horizontal distance to the flow line will be rounded up to the next highest 6 " increment.
7. Back Slope. The Department's typical practice is to place the toe of the back slope outside of the clear zone. See the typical section figures in Section 6-5 and the clear zone discussion in Section 10-1. In rock cuts, the back slope may be as steep as 4:1. See rock cut detail in Figure 6-12.
8. Fill Slope (Height $>15^{\prime}$). A $1.75: 1$ slope may be allowed to avoid significant right-of-way and/or environmental concerns.
9. Minimum Stopping Sight Distance. If practical, values in the columns may be adjusted for grades (see Table 4-1).
10. Decision Sight Distance. The values provided are for a directional change (e.g., lane change) at the design speed. See Section 41 for decision sight distance values for other conditions.
11. Horizontal Sight Distance. For a given design speed, the necessary middle ordinate should be determined by the degree of curve and stopping sight distance (see Section 5-2).
12. Minimum Vertical Clearance. The vertical clearances apply to the collector passing under. For the 15 ' -6 " clearance, 6 " is provided for future resurfacing. A $22^{\prime}-6^{\prime \prime}\left(\pm 6^{\prime \prime}\right)$ clearance, depending on actual site conditions, is required at railroad underpasses beneath the collector.

Note that "existing overpassing bridges" refers to any bridge work which does not require the total replacement of both the substructure and superstructure. For example, a bridge deck rehabilitation would be considered an existing overpassing bridge for the purpose of determining the minimum vertical clearance.

The Bridge Program will make the final determination on the adequacy of existing or proposed vertical clearances

Design Element		AADT (1)	Manual Section	Under 250	250-400	400-1500	1500-2000			
DESIGN CONTROLS	*Design Speed (2)	Level	3-4	30 mph	$35-45 \mathrm{mph}$	50 mph				
		Rolling	3-4	30 mph	30 mph	40 mph				
		Mountainous	3-4	20 mph	20 mph	30 mph				
	Access Control		3-5	Entrance Control						
	Level of Service		3-3	C						
$\begin{gathered} \text { CROSS } \\ \text { SECTION } \\ \text { ELEMENTS } \end{gathered}$	*Lane Width		6-1	10^{\prime}		$\begin{aligned} & <40 \mathrm{mph}: 10^{\prime} \\ & >40 \mathrm{mph}: 11^{\prime} \end{aligned}$	11'			
	*Shoulder Width (3)		6-1	$2^{\prime}(3 a)$		6' (3b)	8^{\prime}			
	Cross Slope	*Travel Lane	6-1	2.0\%						
		Shoulder	6-1	Paved: 4.0\%			Unpaved: 6.0\%			
	Auxiliary Lane Width (4)		6-1	10^{\prime}			11'			
	*New and Rehabilitated Bridges	Structural Capacity	\sim	SEE BRIDGE PROGRAM						
		Minimum Width	\sim							
	*Existing Bridges to Remain in Place	Structural Capacity	\sim							
		Minimum Width	\sim							
	Clear Zone		10-1	(5)						
	Side Slopes Cut Fill	Front Slope	6-3	1:3			1:4			
		Depth of Ditch	6-3	(6)						
		Back Slope	6-3	1:2 (7)						
		0-15' Height	6-3	1:3			1:4			
		>15 ' Height	6-3	1:2 (8)						
ALIGNMENT ELEMENTS	*Minimum Stopping Sight Distance (9)		4-1	20 mph	25 mph	30 mph	40 mph	45 mph	50 mph	
			115'	155'	200'	305'	$360{ }^{\prime}$	425'		
	Passing Sight Distance			4-1	$710{ }^{\prime}$	$900{ }^{\prime}$	1090^{\prime}	1470^{\prime}	1625'	1835'
	Decision Sight Distance (10)		4-1	$300{ }^{\prime}$	375	$450{ }^{\prime}$	$600{ }^{\prime}$	675	$750{ }^{\prime}$	
	*Maximum Degree of Curve ($\mathrm{e}=6.0 \%$)		5-2	$49^{\circ} 15^{\prime}$	$30^{\circ} 45^{\prime}$	$21^{\circ} 00^{\prime}$	$11^{\circ} 15^{\prime}$	$8^{\circ} 45^{\prime}$	$6^{\circ} 45^{\prime}$	
	*Superelevation Rate		5-2	Table 5-6 ($\mathrm{e}_{\max }=6.0 \%$)						
	*Horizontal Sight Distance		5-2	(11)						
	Maximum Profile Grades	Level	4-2	8\%	7\%	7\%	7\%	7\%	6\%	
		Rolling	4-2	11\%	10\%	10\%	9\%	9\%	8\%	
		Mountainous	4-2	16\%	15\%	14\%	12\%	12\%	10\%	
	Minimum Profile Grades		4-2	Desirable: 0.25%			Minimum: 0\%			
	*Minimum Vertical Clearance (12)	New and Replaced Overpassing Bridges	4-3	Desirable: 15'-6"			Minimum: 15'-0"			
		Existing Overpassing Bridges	4-3	$14^{\prime}-0^{\prime \prime}$						

* Controlling design criteria (See Section 3-7).

GEOMETRIC DESIGN CRITERIA FOR RURAL LOCAL ROADS (New Construction/Reconstruction)

Footnotes to Table 7-4

1. Traffic Volumes. The AADT is determined for a future year, usually 20 years beyond the construction completion date.
2. Design Speed. Minimum values for design speed are presented. The designer should provide higher values where conditions allow. In addition, the design speed should equal or exceed the posted or regulatory speed limit of the completed facility.
3. Shoulder Width. The criteria refer to the paved shoulder width, if applicable, or to the graded shoulder width, if unpaved. The graded shoulder width is the distance between the edge of travel lane and the point of intersection of the shoulder slope and side slope. The following will also apply to shoulder widths:
a. The minimum shoulder width is 4^{\prime} if guardrail is used.
b. In restricted locations (e.g., mountainous terrain), a shoulder width of 5' may be used.

On rural local roads where curbs are provided, it is desirable to increase a proposed 4^{\prime} or 6^{\prime} shoulder by an additional 2^{\prime}.
4. Auxiliary Lane Shoulders. Shoulder widths adjacent to auxiliary lanes should be 4' desirable and 2' minimum.
5. Clear Zone. Clear zone will vary according to design speed, traffic volume and side slope. See Section 10-1.
6. Depth of Ditch. A "V" ditch section should be used unless hydraulic capacity warrants the use of a trapezoidal ditch. Maintain the depth of ditch 1 ' below subgrade. If this criteria (1 ' below subgrade) determines the horizontal location of the ditch flow line, the calculated horizontal distance to the flow line will be rounded up to the next highest 6 " increment.
7. Back Slope. For $4: 1$ front slopes, the Department's typical practice is to place the toe of the back slope outside of the clear zone. See the typical section figures in Section 6-5 and the clear zone discussion in Section 10-1. In rock cuts, the back slope may be as steep as 4:1. See rock cut detail in Figure 6-12.
8. Fill Slope (Height $>15^{\prime}$). A $1.75: 1$ slope may be allowed to avoid significant right-of-way and/or environmental concerns.
9. Minimum Stopping Sight Distance. If practical, values in the columns may be adjusted for grades (see Table 4-1).
10. Decision Sight Distance. The values provided are for a directional change (e.g., lane change) at the design speed. See Section 41 for decision sight distance values for other conditions.
11. Horizontal Sight Distance. For a given design speed, the necessary middle ordinate should be determined by the degree of curve and stopping sight distance (see Section 5-2).
12. Minimum Vertical Clearance. The vertical clearances apply to the local road passing under. For the 15-6" clearance, 6 " is provided for future resurfacing. A $22^{\prime}-6{ }^{\prime \prime}\left(\pm 6^{\prime \prime}\right)$ clearance, depending on actual site conditions, is required at railroad underpasses beneath the local road.

Note that "existing overpassing bridges" refers to any bridge work which does not require the total replacement of both the substructure and superstructure. For example, a bridge deck rehabilitation would be considered an existing overpassing bridge for the purpose of determining the minimum vertical clearance.

The Bridge Program will make the final determination on the adequacy of existing or proposed vertical clearances

Design Element			Manual Section	2-Lane		Multi-lane (Divided/Undivided)		
			With Curb	Without Curb	With Curb	Without Curb		
DESIGN CONTROLS	* Design Speed (1)			3-4	$40-45 \mathrm{mph}$	$30-45 \mathrm{mph}$	$40-45 \mathrm{mph}$	$45-50 \mathrm{mph}$
	Access Control		3-5	Entrance Control		Entrance Control		
	Level of Service		3-3	C		C		
	On-Street Parking		6-1	(2)		(2)		
CROSS SECTION ELEMENTS	*Lane Width		6-1	12^{\prime}		12^{\prime}		
	*Shoulder Width/Curb Offset	Right	6-1	8'	8'	Des: 10' Min: 2^{\prime}	10^{\prime}	
		Left	6-1	N/A		Des: 4' Min: 1'	4^{\prime}	
	Cross Slope	*Travel Lane	6-1	2.0\%		2.0\%		
		Shoulder/Curb Offset (4)	6-1	4.0\%		4.0\%		
	Auxiliary Lane Width (5)		6-1	Desirable: 12^{\prime}	Minimum: 11'	Desirable: 12^{\prime}	Minimum: 11'	
	CTWLT Lane Width (6)		8-5	$\mathrm{V}>30$: 14^{\prime}	$\mathrm{V} \leq 30$: 12^{\prime}	$\mathrm{V}>30$: 14^{\prime}	$\mathrm{V} \leq 30$: 12^{\prime}	
	Parking Lane Width (7)		6-1	Desirable: 12^{\prime}	Minimum: 10^{\prime}	Desirable: 12^{\prime}	Minimum: 10^{\prime}	
	Sidewalk Width (8)		6-1	5' Minimum		5' Minimum		
	Median Width		6-2	N/A		N/A		
	*New and Rehabilitated Bridges	Structural Capacity	\sim	SEE BRIDGE PROGRAM		SEE BRIDGE PROGRAM		
		Minimum Width	\sim					
	*Existing Bridges to Remain in Place	Structural Capacity	\sim					
		Minimum Width	\sim					
	Clear Zone		10-1	(10)		(10)		
	Side Slopes		6-3	See Figure 6-11	See Table 7-2	See Figure 6-10	See Table 7-2	
ALIGNMENT ELEMENTS	*Minimum Stopping Sight Distance (11)		4-1	40 mph	45 mph		50 mph	
			305	$360{ }^{\prime}$		425'		
	Passing Sight Distance			4-1	1470'	1625^{\prime}		1835'
	Decision Sight Distance (12)		4-1	825	$930{ }^{\prime}$		1030^{\prime}	
	*Maximum Degree of Curve		5-2	$11^{\circ} 30^{\prime}\left(\mathrm{e}_{\max }=4.0 \%\right)$	$8^{\circ} 45^{\prime}$	$\mathrm{x}=6.0 \%$)	$6^{\circ} 45^{\prime}\left(\mathrm{e}_{\text {max }}=6.0 \%\right)$	
	*Superelevation Rate		5-2	Fig. 5-11 ($\mathrm{e}_{\max }=4.0 \%$)	Table 5-6	$\mathrm{max}=6.0 \%)$	Table 5-6 ($\left.\mathrm{e}_{\max }=6.0 \%\right)$	
	*Horizontal Sight Distance		5-2	(13)				
	Maximum Profile Grades	Level	4-2	8\%	6\%		6\%	
		Rolling	4-2	9\%	7\%		7\%	
		Mountainous	4-2	11\%	9\%		9\%	
	Minimum Profile Grades		4-2	Curbed: Desirable $\sim 0.5 \%$; Min. $\sim 0.25 \%$ Uncurbed: Desirable $\sim 0.25 \%$; Min. $\sim 0 \%$				
	*Minimum Vertical Clearance (14)	New and Replaced Overpassing Bridges	6-4	Desirable: 16'-6"		Minimum: $1^{\prime} 6^{\prime}-0^{\prime \prime}$		
		Existing Overpassing Bridges	6-4	14'-0"				

* Controlling design criteria (See Section 3-7).

Table 7-5

GEOMETRIC DESIGN CRITERIA FOR URBAN ARTERIALS (New Construction/Reconstruction)

Footnotes to Table 7-5

1. Design Speed. A design speed of 30 mph may be used in restricted built-up areas. The design speed should equal or exceed the anticipated posted or regulatory speed limit of the completed facility.
2. On-Street Parking. The decision to provide on-street parking will be made on a case-by-case basis. See Section 6-1 for more information.
3. Travel Lane Cross Slope. On undivided multilane highways with curbs and where the shoulder width is less than 4', both outside travel lanes will have a cross slope of 3.0% to provide more drainage.
4. Cross Slope (Curb Offset). For curb offsets (shoulder width less than 4'), the cross slope will be the same as the cross slope of the adjacent travel lane.
5. Auxiliary Lane Shoulders. Shoulder widths/curb offsets adjacent to auxiliary lanes should be 4^{\prime} desirable and 2^{\prime} minimum or the same as is adjacent to the travel lane, whichever is less.
6. CTWLT Lane Width. In industrial areas with large truck traffic turning frequently, the desirable CTWLT lane width is 16 'for all design speeds.
7. Parking Lanes. Where the parking lane will be used as a travel lane during peak hours or may be converted to a travel lane in the future, the width should be 12^{\prime}. Cross slopes for parking lanes should be 4.0%.
8. Sidewalk Width. Where roadside appurtenances are located within the sidewalk, the minimum width should be 7'. In built-up areas, the sidewalk is often paved between the curb and building line.
9. Median Widths (Between Edges of Travel Lanes). The following will apply:
a. Widths for flush medians should range between 2^{\prime} and 6^{\prime}.
b. Widths for raised medians should range between 6^{\prime} and 18^{\prime}. An 18^{\prime} width should be used where there are frequent left-turn lanes along the arterial to provide sufficient space for turn lanes.
c. Widths for depressed medians should be determined by design requirements and field conditions.
d. See Section 6-2 for more discussion.
10. Clear Zone. Clear zone will vary according to design speed, traffic volume, side slope and other factors. See Section 10-1.
11. Minimum Stopping Sight Distance. If practical, values in the columns may be adjusted for grades (see Table 4-1).
12. Decision Sight Distance. The values provided are for a directional change (e.g., lane change) at the design speed. See Section 41 for decision sight distance values for other conditions.
13. Horizontal Sight Distance. For a given design speed, the necessary middle ordinate should be determined by the degree of curve and stopping sight distance (see Section 5-2).
14. Minimum Vertical Clearance. The vertical clearances apply to the arterial passing under. For the $16^{\prime}-6$ " clearance, $6^{\prime \prime}$ is provided for future resurfacing. The minimum vertical clearance is $17^{\prime}-6$ " for the arterial passing under a new pedestrian bridge or new sign truss. The clearance is $17^{\prime}-0$ " for the arterial passing under an existing pedestrian bridge or existing sign truss. A $22^{\prime}-6 "\left(\pm 6^{\prime \prime}\right)$ clearance, depending on actual site conditions, is required at railroad underpasses beneath the arterial.

Note that "existing overpassing bridges" refers to any bridge work which does not require the total replacement of both the substructure and superstructure. For example, a bridge deck rehabilitation would be considered an existing overpassing bridge for the purpose of determining the minimum vertical clearance.

The Bridge Program will make the final determination on the adequacy of existing or proposed vertical clearances.

* Controlling design criteria (See Section 3-7).

GEOMETRIC DESIGN CRITERIA FOR URBAN COLLECTOR ROADS/STREETS (New Construction/Reconstruction)

Footnotes to Table 7-6

1. Design Speed. The design speed should equal or exceed the anticipated posted or regulatory speed limit of the completed facility.
2. On-Street Parking. The decision to provide on-street parking will be made on a case-by-case basis. See Section 6-1 for more information.
3. Lane Width. In industrial areas, lanes should be 12^{\prime} wide. In residential areas in restricted locations, lanes may be 10' wide.
4. Cross Slope (Curb Offset). For curb offsets (shoulder width less than 4^{\prime}), the cross slope will be the same as the cross slope of the travel lane.
5. Auxiliary Lane Shoulders. Shoulder widths/curb offsets adjacent to auxiliary lanes should be 4^{\prime} ' desirable and 2^{\prime} minimum or the same as is adjacent to the travel lane, whichever is less.
6. Sidewalk Width. Where roadside appurtenances are located within the sidewalk, the minimum width should be 7'. In built-up areas, the sidewalk is often paved between the curb and building line.
7. Clear Zone. Clear zone will vary according to design speed, traffic volume, side slope and other factors. See Section 10-1.
8. Minimum Stopping Sight Distance. If practical, values in the columns may be adjusted for grades (see Table 4-1).
9. Decision Sight Distance. The values provided are for a directional change (e.g., lane change) at the design speed. See Section 41 for decision sight distance values for other conditions.
10. Horizontal Sight Distance. For a given design speed, the necessary middle ordinate should be determined by the degree of curve and stopping sight distance (see Section 5-2).
11. Minimum Vertical Clearance. The vertical clearances apply to the collector passing under. For the $15^{\prime}-6$ " clearance, 6 " is provided for future resurfacing. A $22^{\prime}-6^{\prime \prime}\left(\pm 6^{\prime \prime}\right)$ clearance, depending on actual site conditions, is required at railroad underpasses beneath the collector.

Note that "existing overpassing bridges" refers to any bridge work which does not require the total replacement of both the substructure and superstructure. For example, a bridge deck rehabilitation would be considered an existing overpassing bridge for the purpose of determining the minimum vertical clearance.

The Bridge Program will make the final determination on the adequacy of existing or proposed vertical clearances.

Design Element			Manual Section	With Curb	Without Curb	
$\begin{gathered} \text { DESIGN } \\ \text { CONTROLS } \end{gathered}$	* Design Speed (1)		3-4	20-30 mph		
	Access Control		3-5	Entrance Control		
	Level of Service		3-3	C		
	On-Street Parking		6-1	(2)		
CROSS SECTION ELEMENTS	*Lane Width		6-1	Desirable: 11'	Minimum: 10'	
	*Shoulder Width/Curb Offset		6-1	$2^{\prime}-6{ }^{\prime}$	$4^{\prime}-6{ }^{\prime}$	
	Cross Slope	*Travel Lane	6-1	2.0\%		
		Shoulder/Curb Offset (3)	6-1	4.0\%		
	Auxiliary Lane Width (4)		6-1	Desirable: 11^{\prime}	Minimum: 10^{\prime}	
	Parking Lane Width		6-1	Desirable: 9^{\prime}	Minimum: 7^{\prime}	
	Sidewalk Width (5)		6-1	5' Typical		
	*New and Rehabilitated Bridges	Structural Capacity	\sim	SEE BRIDGE PROGRAM	SEE BRIDGE PROGRAM	
		Minimum Width	\sim			
	*Existing Bridges to Remain in Place	Structural Capacity	\sim			
		Minimum Width	\sim			
	Clear Zone		10-1	(6)		
	Side Slopes		6-3	See Figure 6-11	See Table 7-4	
ALIGNMENT ELEMENTS	*Minimum Stopping Sight Distance (7)		4-1	20 mph	mph ${ }^{\text {mph }}$	
			115^{\prime}	55'		
	Passing Sight Distance			4-1	710^{\prime}	900' ${ }^{\prime}$
	Decision Sight Distance (8)		4-1	420^{\prime}	20^{\prime} 620'	
	*Maximum Degree of Curve (e $=4.0 \%$)		5-2	$72^{\circ} 45^{\prime}$	(${ }^{\circ} 00-24^{\circ} 45^{\prime}$	
	*Superelevation Rate		5-2	Figure 5-12 ($\mathrm{e}_{\max }=4.0 \%$)		
	*Horizontal Sight Distance		5-2	(9)		
	Maximum Profile Grades	Residential	4-2	10\%		
		Commercial/Industrial	4-2	5\%		
	Minimum Profile Grades		4-2	Curbed: Desirable $\sim 0.5 \%$; Min. $\sim 0.25 \%$ Uncurbed: Desirable $\sim 0.25 \%$; Min. $\sim 0 \%$		
	*Minimum Vertical Clearance (10)	New and Replaced Overpassing Bridges	6-4	Desirable: 15'-6"	Minimum: $15^{\prime}-0{ }^{\prime \prime}$	
		Existing Overpassing Bridges	6-4	$14^{\prime}-0^{\prime \prime}$		

* Controlling design criteria (See Section 3-7).

GEOMETRIC DESIGN CRITERIA FOR URBAN LOCAL ROADS/STREETS (New Construction/Reconstruction)

Footnotes to Table 7-7

1. Design Speed. The design speed should equal or exceed the anticipated posted or regulatory speed limit of the completed facility.
2. On-Street Parking. The decision to provide on-street parking will be made on a case-by-case basis. See Section 6-1 for more information.
3. Cross Slope (Curb Offsets). For curb offsets (shoulder width less than 4 '), the cross slope will be the same as the cross slope of the travel lane.
4. Auxiliary Lane Shoulders. Shoulder widths/curb offsets adjacent to auxiliary lanes should be 4' desirable and 2' minimum or the same as is adjacent to the travel lane, whichever is less.
5. Sidewalk Width. Where roadside appurtenances are located within the sidewalk, the minimum width should be 7'. In built-up areas, the sidewalk is often paved between the curb and building line.
6. Clear Zone. Clear zone will vary according to design speed, traffic volume, side slope and other factors. See Section 10-1.
7. Minimum Stopping Sight Distance. If practical, values in the columns may be adjusted for grades (see Table 4-1).
8. Decision Sight Distance. The values provided are for a directional change (e.g., lane change) at the design speed. See Section 41 for decision sight distance values for other conditions.
9. Horizontal Sight Distance. For a given design speed, the necessary middle ordinate should be determined by the degree of curve and stopping sight distance (see Section 5-2).
10. Minimum Vertical Clearance. The vertical clearances apply to the local road/street passing under. For the 15 ' -6 " clearance, 6 " is provided for future resurfacing. A $22^{\prime}-6^{\prime \prime}\left(\pm 6^{\prime \prime}\right)$ clearance, depending on actual site conditions, is required at railroad underpasses beneath the local road/street.

Note that "existing overpassing bridges" refers to any bridge work which does not require the total replacement of both the substructure and superstructure. For example, a bridge deck rehabilitation would be considered an existing overpassing bridge for the purpose of determining the minimum vertical clearance.

The Bridge Program will make the final determination on the adequacy of existing or proposed vertical clearances

[^0]: * Controlling design criteria (See Section 3-7).

